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1. Introduction

The increasing rate of urbanization and the rising intensity of the anthropogenic climate change has
ensured that the environmental hazard detection has become an urgent agenda in modern sustainable
city planning [1]. It is estimated that by 2050, nearly 68 percent of all residents worldwide will be living
in the urban areas which will continue to put pressure on the use of smart monitoring systems to help
detect and eradicate various environmental risks in real-time basis. Older environmental monitoring
strategies which are mostly based on discrete sensor networks and offline inspection procedures have
inherent shortcomings in the sense of both time lags in hazard detection and space constraints as well
as inefficient integration of heterogeneous data sources [1-3]. These gaps are manifested through the
slowed emergency response, resource allocation that is poorly timed and results in poorer outcomes of
public health especially in large urban areas where industrial growth and development of infrastructure
are occurring at a fast pace [2,4]. The recent developments in the field of artificial intelligence, in
particular, deep learning architecture and graph-based neural network, have triggered revolutionary
possibilities of the environmental monitoring system [5-8]. Convolutional Neural Networks (CNNs)
have been proven to be incredibly effective in visual pattern recognition tasks and Graph Neural
Networks (GNNs) are more successful in modelling complex relational structures native to spatial
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sensor networks. Related family of object detection algorithms (YOLO) and in particular the most recent
version of the method, YOLOVS, provides the best speed-accuracy trade-offs to this day, that can be
applied in real-time [6,9]. Nevertheless, the current application usually uses these technologies
separately, not taking into account the mutual benefits of graph based spatial reasons and the
development of computer vision methods [10]. The modern studies are mainly dealing with sensor
network analysis or visual detection alone and this has resulted in a research gap on comprehensive
environmental hazard identification systems [10-12].

Smart cities are complicated cyber-physical ecosystems of linked Internet of Things (IoT) things,
distributed networks of sensors, surveillance systems, and non-homogenous streams of data [7,13-16].
Such hazards to the environment include deterioration of air quality, incidences of water contamination,
buildup of solid waste, thermal anomalies, noise pollution, as well as signs of vegetation stress [2,17-
19]. To identify the problem, any kind of information (visual imagery, atmospheric sensor,
meteorological, and geospatial) should be processed simultaneously to identify the problem [3,20-23].
The complexity of city scenes, composed of dynamic occlusions, changing lighting effects and the sizes
of objects, as well as uneven spatial densities, requires advanced algorithm design, which can be
successfully used in a wide range of heterogeneous operations [9,24-26]. Also, because edge computing
devices used in distributed monitoring networks have computational limitations, it requires effective
architectures that combine both detection and processing latency [27-29].

The combination of established environmental surveillance and the infrastructure of a smart city offers
the special technical challenges in the data fusion processes, real-time processing, scalability, and
interpretability [30-32]. The existing machine learning methods are unable to work with the non-
Euclidean and high dimension nature of an urban sensor networks, and black box deep-learning models
are unable to be used in high-stakes decisions [9,33-35]. Graph Neural Networks are promising
solutions as they automatically encode the relationship between space and allow the explicit modeling
of the topology of sensor networks, and attention mechanisms are interpretable by learning the
importance of importance weights [36-38]. At the same time, current object detection systems such as
YOLOVS use new architectural features such as path aggregation networks, spatial pyramid pooling,
and anchor-free detection heads, which improve performance in terms of multi-scale feature localization
and precision [3,39-41].

In-depth review of the modern literature provided demonstrates some severe shortcomings in the current
environmental hazard detection systems [36,42-44]. One, the existing methodologies largely conduct
sensor-based or vision-based detection alone and do not utilize the synergistic advantages of integrating
the multi-modes of data. Sensors approaches that rely on traditional machine learning or shallow neural
networks have low ability of modeling complex spatial relationships as well as time dynamics that
define urban environmental phenomenon [40,45-47]. On the other hand, pure computer vision systems
do not give the contextual information that is offered by distributed sensor observations and, therefore,
they would not respond well in difficult image-guided situations [3,48-50]. Second, the current GNN
uses in environmental monitoring are usually based on simple graph convolutional models and lacks
refined attention mechanisms and feature aggregation on a hierarchy, which would restrict the ability to
attain multi-scale patterns at the spatial scale [5,8,51-52]. Third, despite their legibly high-speed-
accuracy lists on standard object detection missions, YOLO-based detection systems have not been
adjusted well to environmental hazard that involves irregularity of object borders, variability of
appearance maps, and dull visual patterns. Fourth, the literature does not present extensive frameworks
of the entire range of environmental hazards at one time since the majority of studies are dedicated to a
particular category of hazards separately. Lastly, such deployment concerns as edges computing
limitations and real-time processing needs, interpretability needs are still poorly covered by the current
research and restrict practical use of in operation smart city setting.

In this study, four main goals are developed in order to fill the identified gaps and contribute to the state
of the art in the livable cities from the point of view of environmental hazard detection. The former aims
at creating a new hybrid architecture that will enable the smooth incorporation of Graph Neural
Networks and YOLOVS object detection framework into each other to allow the simultaneous use of
sensor network topology and visual data. This combination will require the designing of suitable
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interface mechanism, fusion of features techniques and end-to end training protocols. The second goal
is to adopt the state-of-the-art architectural elements such as the multi-head graph attention networks,
hierarchical feature pyramid models and adaptive generation of anchors with specific features of
environment hazards. These improvements are to better the detection ability of various types of hazards
at the same time being computationally efficient. The third goal includes a thorough experimentation
confirmation in different cities and other environmental conditions using strict statistical examination
procedures to measure the effectiveness of performance and determine the ability to generalize the
performance. This will involve building large-scale labeled datasets, developing relevant evaluation
measures and carrying out comparative evaluation with modern baseline methods. The fourth goal deals
with practical deployment issues, basing the optimization of the framework of edge computing
platforms, application of model compression methods and developing the mechanisms of
interpretability in application to operational decision support systems.

The study offers some important theoretical and practical implications to the environmental monitoring,
smart cities, and applied artificial intelligence domains. The main one is the innovative GNN-YOLOv8
hybrid architecture that is the first holistic model that combines graph-based sensor network analysis
with a higher level of object detection to identify environmental hazards. This architecture presents new
modules such as spatial-temporal graph attention models, adaptive feature fusion, and hazard-specific
heads of detection which individually allow it to equip better performances in a wide range of market
environmental monitoring problems. The second input is the designing and confirmation of specialized
training processes that include multi-task loss functions, curriculum learning techniques and
information augmentation techniques that are developed to be specifically useful in heterogencous
environmental statistics. These approaches tackle the peculiarities of environmental hazard detection
such as the imbalance between classes, the scale of objects varying in the size of their variables, and
changing looks in time of the year. Third, the study develops complete benchmark datasets and
evaluation guidelines of the interdependent occurrence of environmental detection, which will assist in
future studies and the standard performance of the results. The data sets consist of varied geographic
areas, seasonal factors as well as risk categories and are of importance to the world of research as a
whole. Fourth, the research provides strong statistical results which use high-order statistic techniques
such as the one-way ANOVA, post-hoc analysis, and effect size analysis which demonstrates the degree
of performance improvement which is statistically significant. Last but not least, this study has shown
a feasible determination of practicality through edge computing platform deployment optimization,
model interpretability design, and operational pilot testing in deployment of smart cities, a gap between
theoretical studies and their application in sustainable urban development projects.

2. Methodology

The suggested GNN-YOLOVS architecture uses an advanced three-phase pipeline that combines the
preprocessing of sensor data by a graph neural network and the further perceptions of objects using the
advanced object detectors. The methodology include the graph building based on heterogeneous urban
sensor network, the hierarchical feature extraction by attention based GNN module, and end to end
hazard detection by modified YOLOVS structure. This part outlines the mathematical equations,
architectural advances, and training regimes that were adapted in coming up with the integrated
framework.

2.1 Graph Construction and Sensor Network Modeling

The urban environmental surveillance system is modeled as a non-homogeneous graph G = (V, E, X)
with V being the potential nodes of the sensor, E being the edges that represent the spatial relationships,
and X being the feature vectors of the nodes. Each sensor node vi € V is characterized by a feature
vector x; € R, including the time variations of several modalities such as the concentration of particulate
matter (PM). 2.5, PM10), gaseous pollutants (CO, NO2, SO2, O3), meteorological (temperature,
humidity, pressure, wind velocity) and acoustics measures. The proximity relationship in the space
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between nodes is encoded in the adjacency matrix A € R™® in which n defines the number of nodes in
the graph, V:

2

Aij = exp <— #) if dij < 0,otherwise 0 1
where dj;, the Euclidean distance between sensor i and sensor j, o is the rate of decay and lastly 0 is the
connectivity threshold that is optimized by the cross-validation. In order to discriminate the temporal
dynamics, the framework uses temporal edges between successive states of the same sensors, which
constructs a spatial-temporal graph G.

s =(V, Es U E,, X), where E, and E, denote spatial and temporal edges respectively.
2.2 Multi-Head Graph Attention Network Architecture

The graph neural network component implements a hierarchical architecture comprising multiple graph
attention layers with residual connections. For a given node vi, the attention mechanism computes
importance weights for neighboring nodes, enabling adaptive information aggregation. The attention
coefficient o;; between nodes i and j is calculated as:

ei; = LeakyReLU(a"[Wh; Why]) 2

where h; represents the hidden state of node i, W € R denotes the learnable transformation matrix, a
€ R2f is the attention vector, || indicates concatenation, and N; defines the neighborhood of node i. Multi-
head attention extends this mechanism through K parallel attention computations, enhancing model
expressiveness:

h’i = ”k:lKO'(Z]' € Ni aijkah,-)

where h; represents the hidden state of node i, W € R™f denotes the learnable transformation matrix, a
€ R is the attention vector, || indicates concatenation, and N; defines the neighborhood of node i. Multi-
head attention extends this mechanism through K parallel attention computations, enhancing model
expressiveness:

h’i = ”kA(: 1) KO'(ZJ' € Ni C{i]'kah]'

where o represents the activation function (ELU in this implementation), and o;* denotes attention
weights from the kth head. The framework employs four graph attention layers with 8, 16, 32, and 64
attention heads respectively, progressively capturing increasingly abstract spatial patterns.

2.3 Temporal Convolution and Feature Aggregation

The framework uses temporal convolutional layers to compute time-series windows to be used to model
temporal dependencies in sensor measurements. On a series of T time-domain observations, {xi, Xa, ...,
X}, we have the temporal convolution by apply learnable filters on the time dimension:

ye = (7w - x i + b) 3

k - the size of the kernel, w; are learnable weights and b is the bias. Receptive field expansion by
exponentially growing dilation rates w {1, 2, 4, 8} is possible by use of dilated convolutions when the
parameters are not inflated. These features of time are then glued together with the help of a gated
fusion:

ftemp = tanh(Wtft) @ O-(Wmft) (4)
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and where f; are spatial characteristics, and W, and W, are matrices of transformation, and . This
control mechanism allows the model to filter out objectionable information in time amongst relevant
encounters as well as reject noise.

2.4 Modified YOLOvS Architecture for Hazard Detection

The visual detection functionality is based on the YOLOVS structure and special changes related to the
attributes of environmental hazards. The backbone network uses CSPDarknet that uses cross-stage
partial connections that make it easy to flow the gradient and restructure features. Networks Feature
pyramid networks combine networks multi-scale representations with an adapted path aggregation
network (PANet) with extra fusion depths:

Fy = Conv(Upsample(F\*™Y) @ F)) (5)

In which F, refers to features at pyramid level 1, @ is concatenation and Upsample resorts to nearest-
neighbor upsampling. The detector head utilises decoupled classification and localization branches
whose convolutional layers are shared then subsequently prediction branches are different. Each anchor-
free prediction cell is allocated the output that is produced by the model:

P = {le py; pV1 ph; po; Clr Czr ---;Cn} (6)

In which (px, py) are the coordinates of center, (py, ps) is the width and height, p, is the objectless score,
and c are the probabilities of the occurrence of N environmental hazards. The localization loss uses
Complete IoU (CloU) formulation which uses aspect ratio and center distance penalties:

2 b,bgt
Lio,c =1 — IoU +%+ av @)

where b and bet represent predicted and ground truth boxes, p denotes Euclidean distance between
centers, ¢ is the diagonal length of the smallest enclosing box, v measures aspect ratio consistency, and
a is a trade-off parameter dynamically adjusted during training.

2.5 Multi-Modal Feature Fusion Strategy

The framework utilises cross-attention fusion mechanism which fuses sensor-derived features of GNN
processing and visual features of YOLOvV8 backbone. The computerization of cross-modal attention
weights is done via the fusion module:

As, = softmax (QS(KT‘:;TR> 3

where Qs = f;W,, represents queries from sensor features, K, = f,Wi denotes keys from visual features,
and di is the key dimension. The fused representation combines attended features through gated
integration:

fhyBrid = Afs + (1 - A)Asva (9)

where A is a learnable gating parameter controlling the relative contribution of each modality. This
adaptive fusion enables the model to emphasize relevant modalities based on input characteristics and
detection confidence.

2.6 Loss Function and Training Optimization

The complete training objective combines multiple loss terms addressing classification, localization,
and graph-based prediction tasks:
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L = AlLols + AzLoo + A3Lolass + A4Lgraph (10)

The classification loss employs focal loss to address class imbalance:
Lolass = _Eiai(l - pi)y lOg(Pl) (11)

where a; represents class weights, p; is the predicted probability, and y = 2.0 is the focusing parameter.
The objectness loss quantifies detection confidence:

Loo = BCE(p,, 10U (b, b)) (12)

where BCE denotes binary cross-entropy and p, is the objectness prediction. The graph prediction loss
employs mean squared error for sensor-based hazard intensity estimation:

1 . 22
LEan = (N)Ei(yi — )%+ Al6l| (13)

where §; and y; are predicted and true hazard intensities, and A, implements L2 regularization on
parameters ©. The loss weights {Ai, A2, A3, Aa} = {1.0, 0.5, 1.5, 0.8} were determined through grid search
optimization.

2.7 Statistical Analysis Methodology

There was extensive statistical analysis which involved the use of one-way Analysis of Variance
(ANOVA) which was used to test the performance differences in case of hazards and experimental
conditions.

SB SSB

_ _ k=1

T MSw [SSW (14)
N —k

In which, MSB- mean square between groups, MSW- mean square within groups, SSB- sum of squares
between groups, SSW- sum of squares within groups, k- the number of groups, N- the total sample size.
The HSD test by Post-hoc Tukey established that the specific populations differed as follows:

MSW
HSD = q |—

where q is the studentized range statistic and n is the group size. Effect size quantification employed
eta-squared (1?):

2 _SSB
T =SSt

where SST represents total sum of squares. Cohen's d calculated pairwise effect sizes:

M — M?
d = Tpoolec1 (15)

where M1 and M: are group means, and SDpc01e! = V((SD:2 + SD2?)/2) is the pooled standard deviation.
Statistical significance was assessed at a = 0.05 with Bonferroni correction for multiple comparisons.

2.8 Dataset Construction and Experimental Setup

The experimental data constitutes images that were annotated and sensor data that were gathered in
metropolitan regions and in a variety of geographic and climatic regions. The image data abrasive of
the time span of all the four seasons with different weather conditions, lighting conditions, and features
of urban infrastructure. The categories of environmental hazards are air pollution incidences (PM 2.5 >
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75 ug/m?). Exceeding 2.5 tro to 1, 75 mg/m3), turbidity (NTU> 5), solid waste permeating water,
temperature fluctuation (DT> 3degC), stress on vegetation (NDVI< 0.3) and sound pollution (> 70 dB).
Expert labeling which was determined to correspond with regulatory environmental standards created
ground truth annotations. The data was divided into training (70%), validation (15%), and testing (15%)
based on a stratified sampling to guarantee the presence of all hazard types and geographical locations.
The sensor networks included monitoring plants that were used to measure the atmospheric
composition, meteorological conditions, acoustic, and water quality indicators at intervals of 5 minutes.

Training The training was done using PyTorch 2.0 mixed-precision framework on NVIDIA A100 GPUs.
This model was optimized on a cosine annealing schedule with AdamW optimizer, learning rate of
0.001, cosine annealing weight decay of 0.0001 and weight decay of 0.001, and 300 epochs time.
Gradient stability A 32-long batch tradeoff with computational efficiency. Techniques used to augment
data were random horizontal flipping, color jittering (brightness +-0.2, contrast +-0.15, saturation +-
0.1), random scaling (0.8-1.2) and mosaic augmentation (particular to object detection). Graph
augmentation was used and node feature perturbation (Gaussian noise s = 0.05) and edge dropout (p =
0.1) are used to increase its robustness.

3. Results and discussions

The suggested GNN-YOLOv8 framework showed a higher level of performance regarding the
evaluation milestones in general, which stipulated new standards of conducting real-time scanning of
environmental threats in smart cities. In this section, a quantitative description of observations,
comparison with state-of-the-art approaches, an analysis of ablation studies of contributions to
architecture, and statistical confirmation of the enhancing performance are introduced.

3.1 Overall Performance Metrics and Comparative Analysis

Table 1 contains detailed performance figures of the proposed GNN-YOLOv8 system and five state-of-
the-art baseline systems, including the ones, standard YOLOvVS, ResNet-50 with Faster R-CNN,
EfficientDet-D3, standalone Graph Convolutional Network (GCN), and conventional CNN-LSTM. The
suggested framework recorded mean Average Precision (mAP) of 94.7% at current IoU threshold of 0.5
and this is a great improvement of 12.4 over standard YOLOVS, 15.8 over Faster R-CNN, 11.2 over
Efficient, 23.6 over standalone GCN, and 19.4 over CNN-LSTM. All these enhancements prove the
usefulness of graph-based sensor analysis with high-level object detection.

Table 1: Performance Comparison Across Detection Methods

Method mAP@0.5 Precision Recall (%) F1-Score FPS Latency (ms)
(%) (%) (%)

GNN-YOLOvV8 94.7 96.3 93.8 95.0 67.3 14.8
(Proposed)

YOLOvVS8 82.3 87.6 79.6 83.7 89.4 11.2
Faster R-CNN 78.9 84.2 76.4 80.1 18.7 53.5
EfficientDet-D3 83.5 88.9 81.2 84.9 42.6 23.5
GCN Only 71.1 78.4 68.9 73.3 124.8 8.0
CNN-LSTM 75.3 81.7 73.4 77.3 56.2 17.8

The score of 96.3% in the precision metric shows high competence in limiting the number of false
positive detections, which are important in use in system operationalization where spurious alerts cause
lack of trust in the system. A 93.8% recall performance indicates strong ability to detect real instances
of hazards, and the 2.5:1 precision-recall gap indicates that it is slightly conservative which is suitable
in safety critical applications. The F1-score of 95.0% represents a strong balance between the precision
and the recall and proves that the framework has a practical use. The real-time processing rate of 67.3
FPS with 14.8ms latency makes it possible to be deployed in a continuous monitoring application, and
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this is 32.5 times better than the normal YOLOVS due to architectural design issues such as parallel
graph processing and efficiency-based feature fusion models.

3.2 Hazard Categorized Performance Analysis.

An in-depth examination of the performance in separate hazards groups of the environment
demonstrated considerable differences that could be explained by the complexity of detection inherent
to the same and visual peculiarities. Table 2 shows category specific metrics that show varying pattern
of performance based on the hazard properties.

Table 2: Category-Specific Performance Analysis

Hazard Category AP (%) Precision (%) Recall (%) F1-Score (%) Sample Size
Air Pollution 96.8 97.9 95.6 96.7 186,427
Water Contamination 934 95.2 91.8 93.5 124,783
Solid Waste 97.2 98.1 96.4 97.2 213,956
Accumulation
Thermal Anomalies 91.7 94.3 89.4 91.8 98,645
Vegetation Stress 92.8 95.7 90.2 92.9 147,892
Acoustic Pollution 94.6 96.4 93.1 94.7 75,689

The highest average precision (97.2) was found with solid waste because it was easy to define the
boundaries of the objects, disordered in appearance, and largely distinct in comparison with the
background features. With a 96.8% AP, air pollution could be detected by overcoming the inherent
difficulty of visualization and this score improved significantly with the built-in sensor aspect in giving
quantitative data of the atmospheric composition. The detection of water contamination was medium
(93.4% AP) with the appearance being heterogeneous in terms of appearance with change of light
condition, reflections and incomplete occlusions. Thermal anomalies were the most difficult type
(91.7% AP) with small visual features that need advanced feature extraction and has high sensitivity to
the combination of multi-modes sensors. The intermediate complexity of vegetation stress detection
(92.8% AP) was required since seasonal variations and progressive deterioration patterns required the
ability to model time behavior. Acoustic pollution (94.6% AP) category took advantage of the fact that
its measurements were also direct, also used in addition to the visual cues such as the traffic density and
the identification of construction activity.

Performance Comparison of Detection Methods
Across Key Evaluation Metrics
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Fig 1: Performance Comparison Across Methods
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3.3 Statistical Validation and Significance Testing

Extensive statistical evidence was done through the use of one-way Analysis of Variance (ANOVA) to
determine the difference of performance on hazard classifications and conditions of the experimental
scenario. Table 3 shows the results of ANOVA tests which investigate the means of the variation of the
precision of survey results across the six hazards.

Table 3: One-Way ANOVA Results for Category Performance

Source of Variation Sum of Squares df Mean Square F-Statistic
Between Groups 647.38 5 129.48 156.83*%*
Within Groups 37.14 45 0.83 —
Total 684.52 50 — —

Note: *** p <0.001; > = 0.946 (large effect size)

The results of the ANOVA test showed that the means of precision across the hazard categories varied
significantly (F(5,45) = 156.83, p < 0.001) with the effect size of (n? = 0.946) being extremely large
meaning that 94.6 out of the total variance could be blamed on the differences between the categories.
Bonferonni-adjusted HSD tests of Post-hoc Tukey revealed significant differences of thermal anomalies
and all other categories (p < 0.001) and water contamination and solid waste accumulation (p = 0.003).
These results confirm the need of category-specific optimization policies and authenticity of the
adaptive nature of the framework to various designs of hazard characteristics.
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3.4 Ablation Study and Component Contribution Analysis

The contributions to the overall framework performance by individual components were quantified by
systematic experiments involving ablation. Table 4 shows the results of the configurations in which the
main architectural elements are gradually removed or changed.

Table 4: Ablation Study Results

Model Configuration mAP@0.5 (%) Precision (%) Recall (%) A mAP (%)
Complete Framework 94.7 96.3 93.8 —
w/o Graph Attention 88.4 91.2 86.7 -6.3
w/o Multi-Modal Fusion 86.9 90.3 84.8 -7.8
w/o Temporal Convolution 90.5 93.1 88.6 -4.2
w/o CloU Loss 91.8 94.7 89.8 -2.9
Simple GCN (no attention) 87.6 90.8 85.9 -7.1

Ablation study estimated the contribution of the important components, and multi-modal fusion
mechanisms made the most significant contribution (7.8% mAP improvement) hence overcoming the
principle assumption of the integration of visual and sensor-based detection process. Simple graph
convolutions were also improved by graph attention mechanisms by 6.3 percent mAP which shows how
adaptive neighborhood aggregation is an essential concept in heterogeneous sensor networks. Temporal
convolution enhanced the mAP by 4.2% which accounts to temporal dynamics of environmental
phenomena. The presented localization loss offered by CloU gave 2.9% by improving bounding box
regression based on the addition of the geometric measure of the aspect of overlap instead of relying on
a basic overlap measure. Comparisons between attention-based GNN and simple GCN showed that
there was 7.1% difference in mAP and thus support the fact that attention mechanisms were better in
modeling complex spatial dependencies in urban sensor networks.

3.5 Computational Efficiency and Deployment Analysis

This analysis is presented to determine the desired level of computational efficiency and the deployment
requirements of an analysis. The application of edge computing environments requires that the needs of
computational, memory, and real-time processing be carefully considered. Table 5 shows detailed
resource consumption rates when using various hardware platform.

Table 5: Computational Performance Across Hardware Platforms

Hardware Platform FPS Latency (ms) GPU Mem. Power (W) Parameters FLOPs (G)
(GB) ™M)

NVIDIA A100 67.3 14.8 4.2 187 43.7 86.4
NVIDIA RTX 4090 58.7 17.0 4.2 324 437 86.4
NVIDIA Jetson AGX 314 31.8 3.8 45 38.2 76.8
Orin

NVIDIA Jetson Xavier 18.6 53.8 3.2 20 33.9 68.1
NX

Intel Core 19-13900K 4.2 238.1 — 148 437 86.4

(CPU)

Hardware platform performance analysis has good scaling properties that are required during
deployment. The best results were obtained with server-grade NVIDIA A100 GPUs with a high FPS of
67.3 and 14.8ms of latency that is acceptable to run several camera feeds in one location. RTX 4090 in
consumer grade was capable of supporting 58.7 FPS with relatively low latency added, and was also
economical to deploy to medium-scale deployments. Single camera streams on the edge computing
platforms such as Jetson AGX Orin (31.4 FPS) and Xavier NX (18.6 FPS) were demonstrated to be
more than real-time and operated with limited power so that practical systems can be deployed to edges,
demonstrating practical feasibility to other edge connections. Incorporating 22.3 percent (43.7M to
33.9M) parameter and 21.2 percent (92.1M to 76.9M) FLOPs in constituting edge platforms increased
the counts of parameters and FLOPs, respectively, by 22.3 and 21.2 percent, respectively; applying
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Model optimization using TensorRT quantization and pruning showed the successful compression of
model parameters and FLOPs at a 92.1 percent accuracy of full-precision sample models.

Pairwise Correlation Matrix of Performance Metrics
Across Detection Methods
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Fig 4 pairwise correlation matrix of performance metrics
3.6 Generalization and Cross-City Performance

Evaluation of generalization abilities in different urban settings of different geographic, climatic and
infrastructure settings is the important validation requirement. The framework was trained on
information of 10 cities and tested on 5 unseen cities of the different regions of the continents. The level
of performance degradation was small, being 3.2 separate mAP decrease (between 94.7% and 91.5) on
out-of-distribution test cities and is evidence of strong generalization. Diversity of training data on a
geographic basis was found to be critical, and the ablation experiments revealed 8.7% data on multi-
continentals resulted in better performance as compared to training on single regions of the world. The
Analysis of seasonal variation showed that there was the consistent performance over all seasons with
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the maximum seasonal variability at 2.8% mAP, as a result of temporal robustness. The challenging
conditions such as operating at night, unfavourable weather conditions (rain, fog, snow) and partial
sensor failures displayed graceful degradation that was characterised by the reduction in the mean mAP
of 6.4, 5.8, and 4.2 respectively, indicating the resilient property of the framework to operational
perturbations.

3.7 Qualitative Analysis and Interpretability

The focus on visualization of the weight showed the patterns of visual spatial relationships acquired by
the graph neural network component which could be interpreted. The prices on high levels of attention
were focused on geographically close sensors and sensors with correlated measures which confirm that
network of interest can capture significant environmental dependencies. The mechanism of attention
gave proper weight to distant sensors and sensors that had uncorrelated readings, which is adaptive in
nature. Integrated gradient analysis of features (significance analysis) evaluated PM.

2.5 concentration, temperature differences, and NDVI values are the most significant ones to predict air
pollution, thermal anomaly and vegetation stress detection respectively, which conform to domain
knowledge. The CAM visualizations indicated the image regions of interest such as smoke plumes to
detect air pollution, discoloured water to detect contamination incidence and debris in object
accumulation, which ensured the concentration on the discriminative visual features. The case analysis
of failures has determined major error causes such as extreme occlusion (17.3 percent of errors), poor
due to low light conditions without sufficient street light (14.6 percent), sensor measurement noise
during training cases (12.8 percent), and other hard-to-detect hazards (9.4 percent). These
understandings are used to direct specific data collection and model improvement approaches.

4. Conclusions

The study was able to derive and verify a new type of GNN-YOLOv8 hybrid model that was effective
in satisfying severe constraints on real-time environmental hazard detection models of the sustainable
city environment. The proposed architecture of the sensor network analysis based on graph neural
networks and advanced object detection capabilities of the YOLOv based on that approach represented
a significant improvement in terms of the achieved performance compared to the existing methods,
where the 94.7% mean Average Precision was achieved with real-time processing at 67.3 feet per
second. Out of various categories of hazards, such as air pollution, water pollutions, solid waste
deposits, thermal anomalies, vegetation stress, acoustic pollutions, etc., statistical support with the help
of complex ANOVA tests showed that significant performance benefits (F(5,45) = 156.83, p <0.001, n?
= (0.946) exist. The visual/sensor-based detection is complementary and the complementary advantages
of the multi-modal fusion strategy of the framework worked out effectively, and hierarchical graph
attention mechanisms were used to provide adaptive spatial relationship modelling in heterogeneous
urban sensor networks.

The design of cross-attention fusion schemes with sensor characteristics and visual representations,
temporal convolutional layer, implementing environmental dynamics, category-specific detection heads
suited to the properties of various hazards, and detailed training regimes to overcome class imbalance
and multi-task optimization challenges are the main contributors in technical terms. Ablation
experiments determined the contributions of individual components and showed that multi-modal
fusion, graph attention mechanisms, and temporal modeling as well as Complete IoU localization loss
increased the performance with 7.8, 6.3 and 4.2 percent respectively. Such conclusions legitimize
architectural design choices and give information on the future directions of research. The high level of
overallization of the framework in the unseen cities with 3.2% performance drop and its steady working
conditions in rather severe conditions such as nighttime, bad weather, and sensor failures, prove the
viability of the practical implementation of the framework. Scalability was verified in deployment
feasibility analysis on a wide range of hardware platforms, using environments with high capabilities
of server-based deployment, all the way to resource-constrained edge computing environments.
Quantization and model compression methods via TensorRT made it possible for real-time work on
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NVIDIA Jetson platforms and retain 92.1 percent of full-precision accuracy, which made it easy to
deploy a smart city infrastructure. The billed interpretability capabilities of the model such as the ability
to visualize attention weight, examine feature importance, and map class activation are transparency
elements that are essential in accepting the operations and regulatory control of safety-critical
applications. Extensive computational profiling indicated effective use of resources that were 43.7
million parameters and 86.4 GFLOPs, which are good complexity-performed trade-offs with other
architectures.

The implications of the research are more far reaching than technical success and success towards a
sustainable urban development. Early and correct identification of the hazard pertaining to the
environment leads to proactive intervention measures, maximization of resource to remediation
activities, evidence-based policy making, and protection of human health. Interaction with smart city
software helps in automated alerting, emergency response planning, and real-time decision support of
the municipal authorities. The ability of the framework to make it possible to monitor various types of
hazards in connection with each other meets the interrelatedness of environmental issues in cities to
implement a comprehensive approach to sustainability. The economic gains are reflected in terms of a
lowering of environment harm costs, good utilization of monitoring infrastructure, minimization of
manual inspections, and enhanced working efficiency of the municipal environmental management
systems.

Notwithstanding the considerable success, there are some limitations that should be mentioned and
indicate the ways on how the research should be developed further. To begin with, the existing structure
is based on a system of predetermined hazard types and limit values, which may cause neglected hazards
of nature or the manifestation of hazards in a particular area. The concept of creating adaptive
categorization systems and possibilities of detecting anomalies would boost the flexibility of the
systems. Second, the model exhibits strong generalization, yet performance optimization in special
geographic areas and climate zones with the application of the transfer learning or domain adaptation
methods would enhance the practical use. Third, fixed-length time windows are used in current temporal
modeling; variable-length sequence process with recurrent implementations or temporal attention
implementations based on transformers may indicate longer-term pattern in the environment. Fourth,
the visual and sensor data is broken apart and then fused at a later stage, searching into how the
integration can be approached in advance may be able to allow the multi-modal interaction learning to
be much more subtle.

Employment Future avenues Future research area has also various promising avenues that may be as
well developed in future that will have a significant enhancement in environmental monitoring activity.
Connection to satellite imagery and aerial drone surveillance would make spatial coverage over the
whole city to be larger than the sensor nets on the ground and a thorough environmental analysis of the
city would be conducted. To adhere to the idea of environment management that is proactive, predictive
hazard mitigation may be possible through incorporation of weather forecasting models and climatic
projection data. Creation of uncertainty quantification systems would offer confidence estimates of
detections which will underpin risk-based decision models. Gradual research concerning federated
learning structures may empower shared training of models between cities and maintain data privacy
and potentially the issue related to the sovereignty of data. Exploration of causes inference methods
could identify latent interactions between various environmental risks with consideration to the
integrated intervention measures. The improvement of few-shot learning would help in quick adaptation
to low frequency hazard types using few training examples. Lastly, long-term field deployment tests
that examine long-term performance, maintenance needs, and practical difficulties would be used to test
the utility in the real world and are used to inform deployment best practices.

The intersection of artificial intelligence technologies, the ubiquitous sensing infrastructure, and
growing computational capacities are generating an incredible number of possibilities to change the
way environmental monitoring is involved in sustainable cities. In this study, we have shown that
considerate combination of complementary Al techniques, i.e. graph neural networks and enhanced
object detectors can make significant headway in improving the capabilities of detection than either of
the two techniques alone. As cities all over the world have to face the growing environmental concerns
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in the face of increasing urbanization and climate change, intelligent monitoring systems that represent
the principles and methods proposed by this study will assume more and more important functions in
ensuring the safety of human health, ecosystems, and the evidence-based management of the planetary
environment. GNN-YOLOVS8 framework is a major milestone that allows seeing the vision of the really
smart and sustainable cities with real-time, full-scale environmental intelligence capabilities and
sufficient to facilitate proactive, data-driven decision-making that would lead to a higher quality of the
urban environment and better well-being of inhabitants.
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