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Abstract 

Exponential growth of artificial intelligence (AI) has already introduced a level of energy consumption and 

carbon emission that would have never been seen before, and hence causing a severe sustainability paradox 

in the industrial system. As AI technologies can bring about operational efficiencies and productivity gain, 

its environmental footprint endangers world climatic and sustainable development agendas. This paper 

provides a SWOT analysis of the green implementation of artificial intelligence in industrial systems under 

the scope of the current urgent demand on environmentally friendly AI implementation patterns. We used a 

mixed-method approach by analyzing the data of industrial organizations in manufacturing, energy, logistics, 

and technology sectors using the convenient sample of structured questionnaires and semi-structured 

interviews. The methodology combines Structural Equation Modeling and Partial Least Squares regression, 

Multi-Criteria Decision Analysis (based on Analytical Hierarchy Process) in order to consider the most 

critical success factors and the barriers to implementation. Findings indicate that organizational willingness, 

technological readiness, and regulatory standards all contribute positively (73.4%- variance) to the difference 

in the levels of green AI adoption. The SWOT analysis recognizes the high opportunities on the energy 

efficient algorithms, renewable computing infrastructure and integration of the circular economy whereas the 

barriers to change are high initial investment, skills deficiency and technology hurdles. The research has a 

theoretical impact in that it creates a framework of Green AI Adoption that combines the three aspects of 

environmental, technological and organizational and is practical due to its offering of the implementation 

roadmaps that can be used by industrial practitioners. The study forms a baseline of knowledge regarding 

sustainable AI change in industries by providing essential understanding to the policy-makers, AI developers 

and business executives in the current complicated field of artificial intelligence invention and climate 

management. 

Keywords: Green artificial intelligence, Sustainable computing, Energy-efficient AI, Environmental impact, 

Technology adoption, Organizational readiness. 

 

1. Introduction  

The modern industrial environment is facing a significant technological dilemma whereby the artificial 

intelligence systems, even though they promise operational and competitive excellence, have at the 

same time created significant externalities on the environment by extensively using the computational 

resources and consequent carbon emissions [1-3]. Recent empirical evidence suggests that a single 

large-scale AI model requires training that can generate carbon emission comparable to what five cars 

produce throughout a lifetime or their manufacturing and use stages. Such an environmental load 

increases with the growing integration of AI technologies into industrial organizations in the production 

systems, supply chain management, quality control mechanisms, and decision support frameworks. 

According to the projections by the International Energy Agency, data centers and information 

communication technology infrastructure, which are largely AI workloads, may make up twenty percent 

of world power consumption by 2030 in case the current growth trends remain not halted. Such a 
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concerning pattern requires immediate action in terms of sustainable AI practices, especially in the 

industrial domain where the implementation of the AI applications grows exponentially. 

The paradigm of critical response is green artificial intelligence, which is methodologies, technologies 

and organizational practices aimed at reducing environmental impact in the process of the AI lifecycle 

without compromising or reducing the computational effectiveness [2]. The idea of green AI is further 

than energy efficiency optimization, it incorporates the overall sustainability considerations such as 

reduction of carbon footprint, the use of renewable energy, optimization of hardware life-cycle, 

algorithmic efficiency optimization, and the principles of circular economy that is applied to 

computational infrastructure [2,4,5]. The quality of industrial systems offers unique opportunities and 

challenges to the implementation of green AI, that is, the presence of an old infrastructure that restricts 

the possibilities of its use, the need to maintain operations, compliance with regulatory requirements, 

and the substantial amount of money invested into the system [6-8]. The manufacturing industries, 

energy production centers, logistics services and technology-focused industries experience an 

increasing strain on behalf of stakeholders such as regulatory authorities, investors, consumers and 

green lobby organizations to exhibit visible improvement in terms of the sustainability goals as well as 

undermine the competitive arena with technological innovations. 

The process of green AI strategic implementation in the industrial processes is a complex change of the 

organization including modernization of technological infrastructure, the development of workforce 

capabilities, process redesign, and cultural change programs [9,10]. The organizations have to contend 

with complex issues such as upfront capital investment needs, uncertainty on the payback period, 

technical implementation issues, availability of skills, and the likelihood of disruption of the existing 

operational processes among others [11-13]. At the same time, the potential gains are not limited to the 

environmental impact mitigation, but include lowering the operation costs because of the increase in 

the energy efficiency, a positive corporate image and brand value, better regulating compliance stance, 

availability of sustainability-oriented investment capital, and development of the relationships with 

stakeholders. The process of decision-making on the adoption of green AI should be systematically 

evaluated through frameworks of assessment that have the ability to encompass all the various elements 

of strategies, stakeholder views, technological, and organizational preparedness to adopt [2,14-17]. The 

SWOT analysis offers a systematic method of analysis that is the best in evaluating complicated 

strategic programs that have a wide range of stakeholder implications and uncertain potentials. 

In spite of the increasing awareness of the need to consider environmental sustainability in the context 

of AI development and deployment, there is still much knowledge gap on the patterns of green AI 

adoption, application strategies, factors of success, and mitigation of barriers as far as industrial 

conditions are concerned [9,18-21]. The literature available has almost focused on technical details of 

energy-efficient algorithms and hardware optimization and has virtually no empirical data on the 

process of organizational adoption, strategic decision-making models, and evaluation of the 

consequences of the implementation [22,23]. Besides, studies exploring the alignment of environment 

sustainability goals with industrial AI strategy are still fragmented concerning varied fields such as 

computer science, environmental science, management, and industrial engineering that do not offer 

synthesizing frameworks to include the technological, organizational, and environmental aspect. The 

lack of extensive empirical research exploring actual experiences in adopting green AI in the industry 

limits the amount of useful information that can be given to organizational decision-makers and the 

adoption of technologies. Also, little focus has been placed on the insight to how organizational features, 

industry sector settings, regulation, and level of technology preparedness impact the green AI adoption 

patterns and the level of implementation results. 

The study fills the determined knowledge gaps by conducting an in-depth study on the concept of green 

AI in industrial systems with the SWOT assessment approach with a quantitative empirical study. The 

study objectives include the first one, systematized identification and assessment of internal 

organizational strengths and weaknesses, which affect the capacity to accept green AI; the second one, 

the overall analysis of the external opportunities and threats that shape the strategic environment in 

which green AI is adopted, third, the empirical study of connections between readiness factors in the 

organization, technological opportunities, and green AI adoption results, fourth, creation of a coherent 
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theoretical framework to explain how green AI adoption occurs in the industry, and fifth, drawing up 

recommendations and actionable results to organizational practitioners, policy-makers, and technology 

developers. The work, in addition to the theoretical knowledge, has application implications, which can 

be elaborated by the organization of the Green AI Adoption Framework that can integrate the concepts 

of environmental sustainability with the organizational change management theory and technology 

adoption framework, and towards industrial systems in particular. At the methodological level, the 

research aids in moving the current research in the aspect of a combination of qualitative SWOT analysis 

with quantitative structural equation modeling and multi-criteria decision analysis, which offers 

substantial empirical bases to the strategic recommendations. In practice, the results also provide 

industrial institutions with systematic frameworks of evaluating the preparedness of green AI 

implementation, give priority to the implementation efforts, and design extensive transformation plans 

that correspond to sustainability goals and business needs. 

2. Methodology 

2.1 Research Design and Philosophical Foundation 

The study uses a pragmatic mixed-methods research design consisting of a combination of both 

qualitative and quantitative research approaches to investigate phenomena related to the adoption of 

green AI in industrial systems holistically. The philosophical approach adopts pragmatism as an 

epistemological position, which sees that research questions of the complex organizational and 

technological phenomena should enjoy methodological pluralism with working strengths of the 

interpretive and positivist traditions. The research design also uses sequential exploratory steps in which 

initial qualitative steps pre-empt further quantitative forms of constructing instruments, and analysis 

procedures. This methodology is especially suitable in research of emergent phenomena like the 

adoption of green AI where theoretical models are immature and empirical datasets of research need 

inductive paradigm construction alongside deductive hypothesis testing. The combination of the SWOT 

analysis with structural equations modeling and multi-criteria decision-making methodology offers 

triangulation that improves validity and reliability of the research findings and, at the same time, takes 

into account multidimensional nature of the adoption processes in terms of such aspects as strategy, 

organizational factors, technological capabilities and environmental consequences. 

2.2 SWOT Analysis Framework 

The SWOT analysis framework made the organization of internal and external factors that affected the 

adoption of green AI in industrial systems systematic and assessable. The strengths and weaknesses are 

the attributes of the organization that can be controlled by the managers, the opportunities and threats 

are those aspects of the environment that cannot be directly controlled by the organization. The 

analytical process combined the results of the qualitative interviews with the quantitative survey data, 

which is why the content analysis procedures were used to define the recurring themes and patterns that 

are incorporated by the multiple data sources. The categories of strength were the presence of 

technological infrastructure, organizational capabilities, available financial resources, dedication of 

leadership and experience of sustainability initiative in the past. The areas of weakness covered skill 

gaps, constraints on the legacy system, lack of resources, organizational resistance, and lack of 

knowledge. Opportunity areas analysed the trends in the market, technology, regulations, and 

stakeholders pressures and competitive forces. The implementation costs, technical complexity, 

regulatory uncertainties, competitive bombardment, and the external opposition were regarded as the 

threat factors. 

The analytical paradigm was shifted to a superior level of an old-fashioned descriptive SWOT 

techniques by combining it with quantitative prioritization strategies. All the named SWOT factors were 

assessed in systematic way in terms of relative significance and the magnitude of potential impact by 

use of Analytical Hierarchy Process. This quantification allows the identification of strategic priorities 

and optimization of resource allocation at the same time preserving the qualitative richness of 

conventional SWOT analysis. The combined strategy allows offering a global strategic insight and 

prioritization advice to organizational decision-makers.  
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2.3 Structural equation modeling using partial least squares 

Relationships between latent constructs between organizational readiness, technological infrastructure, 

environmental awareness, regulatory pressure, and green AI adoption intention were analyzed using 

Structural Equation Modeling with the help of Partial Least Squares regression (PLS-SEM). PLS-SEM 

is especially suitable when exploratory research is required and the theoretical model is considered 

complex, non-normality of the data distribution, formative measurement specification. The model of 

analysis also estimates parameters of measurement models and path diagram relationships on an 

elemental way that allows comprehensive review of construct validity and hypothesized causality 

relationships. The measurement model defines the correlations of the latent constructs and measurable 

indicators; the structural model illustrates the hypothesized construct causal relationships. 

PLS-SEM algorithm follows the application of iterative processes that involve both the estimation of 

outer models and inner models until convergence has been achieved. Mode A is used to give the outer 

model estimate of reflective constructs, and here scores of constructs are computed as weighted sums 

of indicator variables when the weights in this model give the maximum explain variance. On formative 

constructs, Mode B estimation uses multiple regression of indicators on construct scores to be used as 

the weight. The inner model estimation computes the scores of latent variables by using weighted 

aggregations of the related constructs whose weight is attributed to the path coefficients of a structural 

model. The algorithm will run in a series of repetitions until alteration of outer weights is less than the 

required convergence value of 0.00001. 

The reflective indicators calculations have an outer model weight value as follows: 

𝑤𝑖𝑘 =
𝐶𝑜𝑣(𝑥𝑖𝑘, 𝜉𝑖)

𝑉𝑎𝑟(𝜉𝑖)
 (1) 

where wik represents the outer weight for indicator k of construct i, xik denotes the indicator variable, 

and ξi represents the latent construct score. 

The structural model path coefficients are estimated through ordinary least squares regression: 

𝛽𝑖𝑗 =  (𝑋𝑖ᵀ𝑋𝑖)−1𝑋𝑖ᵀ𝜉𝑗 (2) 

where βij represents the path coefficient from construct i to construct j, Xi denotes the matrix of 

predictor construct scores, and ξj represents the endogenous construct scores. 

Model quality assessment employs multiple criteria including convergent validity evaluated through 

Average Variance Extracted (AVE), discriminant validity assessed through Fornell-Larcker criterion and 

Heterotrait-Monotrait ratio, internal consistency reliability measured through Composite Reliability 

(CR), and structural model evaluation through coefficient of determination (R²), predictive relevance 

(Q²), and path coefficient significance. Bootstrapping procedures with 5,000 resamples estimate 

standard errors and confidence intervals for all parameters, enabling robust statistical inference. 

The Average Variance Extracted calculation follows: 

𝐴𝑉𝐸 =
(𝛴𝜆𝑖2)

𝑛
(3) 

where λi represents standardized factor loadings and n denotes the number of indicators. AVE values 

exceeding 0.50 indicate satisfactory convergent validity. 

2.4 Multi-Criteria Decision Analysis Using Analytical Hierarchy Process 

Analytical Hierarchy Process (AHP) helped to prioritize elements of AI adoption (green) systematically 

by making use of the structured pair-wise comparison process. AHP will break down decision problems 

of complex nature into hierarchical form that has goal, criteria, sub-criteria, and alternatives levels in 

the process of making decisions in a systematic way at different decision levels. Pairwise comparisons 

were conducted by expert panels of 23 industry in expertise and academic academicians with vast 
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knowledge of AI and sustainability to assess comparative relevance between adoption factors. A nine-

point fundamental scale was used in the process of comparison where one was used to indicate the equal 

importance to nine, which indicates the extreme importance, of the elements when comparing them. 

The methodology of AHP computes the weights of priorities by analysis of comparison matrices by 

eigenvalues. Given an n x n comparison matrix A, the priority vector w is such that: 

𝐴𝑤 =  𝜆𝑚𝑎𝑥𝑤 (4) 

where λmax represents the principal eigenvalue. The consistency of judgments is evaluated through the 

Consistency Ratio (CR): 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 =

[
(𝜆𝑚𝑎𝑥 −  𝑛)

(𝑛 −  1)
]

𝑅𝐼
(5)

 

where CI represents the Consistency Index, RI denotes the Random Index (tabulated values for different 

matrix dimensions), and n is the matrix dimension. CR values below 0.10 indicate acceptable 

consistency. The global priority for each alternative is calculated through weighted aggregation: 

𝐺𝑃𝑖 =  𝛴(𝑤𝑗 ×  𝑠𝑖𝑗) (6) 

where GPi represents the global priority of alternative i, wj denotes the weight of criterion j, and sij 

represents the local priority of alternative i with respect to criterion j. 

2.5 Data Analysis and Validation Procedures 

Thematic analysis processes with NVivo software were used to operate the qualitative data analysis in 

order to conduct systematic codes and patterns. The first codicology produced descriptive codes which 

contain manifest content and the second codicology which is analytical produced latent themes and 

conceptual patterns. Assessment of intercoder reliability was conducted by going through 30 percent of 

the transcripts with two scientists and Cohen, Kappa coefficient of 0.84 which signifies high levels of 

agreement. The quantitative analysis of data was done with SmartPLS software, PLS-SEM estimation, 

and SPSS, descriptive statistics and preliminary analysis. Processes of data screening dealt with missing 

values using the listwise deletion method (3.2% data were deleted), and finally normality evaluation 

using skewness and kurtosis statistics. Evaluation of common method bias was done using the single 

factor test by Harman and the results showed the highest factor had an explanation of 32.7 percent, 

which was less than the alarming point of 50 percent. Convergent and discriminant validity and 

reliability were measured based on standard criteria in the validation of the measurement model. The 

evaluation of structural models involved path coefficients, level of significance, the levels of effects and 

the relevance of the predictors. Combination of qualitative and quantitative results utilized the 

convergent parallel analysis of the comparison and synthesis of the results of the numerous analytical 

methods to create in-wide knowledge about green AI usage phenomena. 

3. Results and discussions 

 

3.1 Sample Characteristics and Descriptive Statistics 

The sample size constituted by the analytical sample size was industrial organizations with different 

sectors and company profiles. The current practices on AI adoption were different with a significant 

difference of 22.8% in initial exploration stages, 41.5% pilot projects, 28.2% full scale AI adoption, and 

7.5% mature, consistent AI integration across operations. The assessment of environmental 

sustainability commitment showed that 15.6% of the companies have insignificant formal programs, 

and 39.8% of companies have developing programs, 32.6% of companies have established programs, 

and 12.0% of companies have advanced sustainability leadership positioning. 

There is significant difference in characteristics of the organization that could pertain to green AI 

adoption as shown by descriptive statistics of the key constructs. The mean of the organization readiness 
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scores was 4.73 (SD=1.24) on seven-point scales, and the results were moderate to high readiness scores 

with a great inter-organizational distinction. The capability of technological infrastructure has a value 

of 4.91 (SD=1.18), which indicates rather sufficient technical bases but still considerable 

marginalization of capabilities in most organizations. Environmental consciousness and dedication 

scores 5.34 (SD=1.07) as the stakeholders have high awareness on the need to be sustainable. The 

moderate external compliance drivers with significant cross-national variation depicting different policy 

environments have a perceived regulatory pressure of 4.86 (SD=1.31). The mean values of green AI 

adoption intention (5.12), with SD=1.15, indicated a positive trend in regards to adopting sustainable 

AI practices in theory but the implementations were relatively low compared to what was stated in the 

intentions. 

 

Fig 1: Correlation heatmap 

Table 1: Descriptive Statistics for Key Constructs (n=347) 

Construct Mean SD Skewness Kurtosis 

Organizational Readiness 4.73 1.24 -0.28 -0.45 

Technological Infrastructure 4.91 1.18 -0.35 -0.52 

Environmental Awareness 5.34 1.07 -0.64 0.12 

Regulatory Pressure 4.86 1.31 -0.19 -0.68 

Financial Resource Capacity 4.42 1.36 -0.15 -0.73 

Green AI Adoption Intention 5.12 1.15 -0.48 -0.29 

3.2 SWOT Analysis: Strengths, Weaknesses, Opportunities, and Threats 

The synthesis of qualitative results of the interviews using the quantitative survey yielded the inclusion 

of vital internal and external antecedents of green AI acceptance into industrial systems. Interpretation 

of transcripts of interviews and survey responses showed that there are many strengths categories, 

weakness areas, opportunities, and threats that should be considered in the strategy. The analytical 
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framework combines descriptive identification and quantitative priority weighting based on AHP 

processes, which allow carrying out the systematic assessment of relative relevance and strategic impact 

scale of each of the identified factors. This whole strategy approach fits with substantial strategic insight 

coupled with the prioritization detail so crucial to the resource allocation and strategic planning 

procedures. 

 

Fig 2: Pairwise scatter plot matrix 

Organizational competencies that can be used to implement green AI include a number of dimensions 

that are interrelated. Current technological infrastructure and digital maturity were identified as 

preconditions with 67.4% of the respondents indicating that they had moderate to high rates of AI ready 

infrastructure to accommodate cloud computing functionalities, data management systems and 

computing resources that could support AI workloads. Companies that have a well-established AI 

initiatives show developing a sustained technical knowledge, implementation experience, 

organizational learning that give them competitive edges when changing to sustainable AI practices. 
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The commitment of the leadership to sustainability initiatives on the environment is another important 

strength, with 72.8% of the interviewed organizations indicating that executive champions are actively 

engaging in the promotion of sustainability goals. Such top management support comes in handy when 

trying to get resource allocations, organizational resistance and long-term transformation programs. 

Moreover, the internal motivation and accountability process that promotes green AI implementation is 

enhanced by an increasing number of stakeholders, who are investors and customers, and other 

employees, along with the regulating authorities. Companies that have a proven environmental 

management infrastructure and sustainability reporting formats have organizational underpinnings that 

enable the incorporation of the goals of the green AI in the current sustainability program. Though there 

is a wide disparity among organizations on the financial resource’s capacity, such resources can be 

utilized in the purchase of energy-saving computing infrastructure, purchasing renewable energy, 

buying specialized expertise, and conducting research and development. These organizational 

advantages offer desirable internal environments in the transformation of green AI across organizations 

and industries despite the difference in the rates of their availability and magnitude. 

The organizational challenges are reflected on the internal weaknesses limiting the adoption of green 

AI, which show that it necessitates a strategy. The knowledge and skill gaps are the most commonly 

listed weaknesses with 78.4% of the participants claiming lack of the appropriate expertise in 

sustainable use of AI, developing energy saving algorithms, and the methods of evaluating 

environmental impact. The new state of green AI as a field implies that special training programs and 

educational materials, as well as practitioners with this experience, are limited, which significantly 

limits human resources. Another critical weakness is legacy technology infrastructure especially to 

established manufacturing and industrial organizations that have old systems with poor optimization 

capabilities in terms of energy conservation. Capital intensity and operational risk identified with the 

challenge of infrastructure modernization involves huge barriers, particularly among organizations that 

have limited resources. These obstacles are complicated by organizational inertia and resistance to 

change, 64.2% of the respondents wanted to note major cultural barriers such as scepticism towards 

benefits of sustainability, competing priorities that ended up taking the place of the management 

attention and risk averse decision-making cultures that preferred maintenance of status quo. Weak 

knowledge of the concept of green AI, existing technologies, and directions to implement the initiatives 

limits strategic thinking and prioritization of the initiatives. Most organizations do not have systematic 

schemes of the measurement of the energy consumed concerning AI and carbon emissions, which 

exclude the possibility to make data-based choices and track performance. The implication of the 

necessity to align the development process of sustainability with the current AI company development 

workflows, operational processes, and performance assessment systems is the challenge in 

implementation. Also, rumors about turnover of investment and the viability of business cases hinder 

the internal promotion game, especially where the business is under pressure to deliver profits now and 

the capital allocations are heavily strict. 

The opportunities of green AI adoption associated with positive tendencies in the environment and new 

opportunities are external. The fast paced technology in energy efficient AI designs, algorithms and 

hardware accelerators are generating widening solution spaces. The recent developments such as neural 

architecture search to optimize their efficiency, model compression methods, efficient transformer 

design and specialized AI accelerator chips with better performance per watt values show significant 

technical advancement. With the rise in the availability of renewable energy sources such as corporate 

power purchase agreements, on-site solar installations, and renewable energy credits, organizations are 

able to run AI infrastructure using clean energy sources at more and more competitive prices. The new 

market demand of sustainable products and services offers business opportunity to organizations that 

prove to lead on the environment case with 83.7% survey respondents indicating that customers show 

greater interest in sustainability credentials. Such regulatory changes as carbon pricing systems, 

emissions reporting, and sustainability disclosure also set up external responsibility schemes that reward 

the implementation of green AI. The increasing sources of sustainability-oriented financing through 

green bonds, ESG investment funds, and impact investment capital comes in as a way of providing 

access to financial resources based on the provisional display of environmental performance. 

Collaboration activities within industries, efforts to develop standards and collaborative learning 
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platforms foster collective learning and sharing of the best practices. Developments in the field of 

academic research keep on enlarging the knowledge related to the principles of sustainable AI, 

approaches, and the frameworks of impact assessment. Competitive positioning factors develop 

strategic imperatives because first-mover advantage sets the market lead and reputational lead of the 

first-mover. The combination of the principles of the circular economy and the design of the AI system 

allows considering the possibility of longer equipment lifespan, reuse of the components, and end-of-

life responsibility. These external opportunities offer good conditions to organizations with the 

strategies of adopting green AI by utilizing such possibilities, which cannot be achieved without 

responsive strategic positioning and organizational capability building. 

The fact that green AI is limited by external threats has to do with arduous conditions in the environment 

and possible challenges [24-26]. Financial barriers may occur due to high implementation costs and 

uncertain timelines of return on investment especially to capital-limited organizations with clashing 

priorities on investment bases [27,28]. Green AI implementation demands specialized skills and 

advanced analysis capabilities and high levels of organization learning, which is not easily marshaled 

by many organizations due to the technical complexity of the implementation process [19,29-31]. The 

fast rate of technological change poses the risk of obsolescence where large ATMs may be depreciated 

ready the introduction of more efficient ways to do so [32,33]. The strategic planning and justification 

of investments to AI are made complex by regulatory uncertainty in most jurisdictions on AI 

governance, standards of environmental reporting and compliance requirements. The lack of 

standardized indicator, measurement procedures, and structural reporting of the impact of AI on the 

environment presents the comparability challenge and threat of greenwashing. The long-term 

sustainability requirements may be compromised by competitive pressures and short-term performance 

expectations especially in thin-margin and highly competitive industries [34-36]. This is because in 

some geographical areas, renewable energy is not readily available hence limiting the amount of clean 

energy that can be acquired [37-40]. The nature of AI supply chains as a global enterprise in hardware 

manufacturing, extractions of rare earth mineral, and electronic waste management makes it difficult to 

sustainability and hard to address it solely in the context of an organization [41-43]. The challenge of 

the skepticism of stakeholders towards the corporate sustainability promises and the authenticity of their 

implementation has reputational risks [28,44-47]. The possibility of sustainability efforts to generate 

operational disruptures or operational degradations creates opposition among operational staff [48,49]. 

Such threats off the shelf require effective risk analysis, the building of the mitigation strategy, and a 

realistic assessment of expectations on the schedules of green AI transformation and its results [3,50-

52]. 

Table 2: SWOT Factor Priority Weights from AHP Analysis 

SWOT Category Factor Priority Weight 

Strengths Existing AI Infrastructure and Technical Capabilities 0.284 

 Executive Leadership Commitment to Sustainability 0.237 

 Stakeholder Pressure and Accountability Mechanisms 0.198 

 Established Environmental Management Systems 0.165 

 Financial Resource Capacity for Innovation 0.116 

Weaknesses Knowledge and Skill Gaps in Green AI Practices 0.312 

 Legacy Infrastructure Technology Constraints 0.276 

 Organizational Inertia and Cultural Resistance 0.219 

 Limited Environmental Impact Measurement Systems 0.193 

Opportunities Energy-Efficient AI Technology Advancements 0.268 

 Growing Market Demand for Sustainable Solutions 0.241 

 Renewable Energy Accessibility and Cost Reduction 0.225 

 Regulatory Frameworks Incentivizing Sustainability 0.187 

 Competitive Positioning and Market Differentiation 0.079 

Threats High Implementation Costs and ROI Uncertainty 0.297 

 Technical Complexity and Implementation Challenges 0.264 

 Rapid Technological Change and Obsolescence Risk 0.218 
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 Regulatory Uncertainty and Compliance Complexity 0.152 

 Competitive Pressures and Short-term Performance Focus 0.069 

 

3.3 Measurement Model Validation 

Construct validity and reliability were measured using the measurement model validation that used the 

PLS-SEM that evaluated systematic assessment of convergent validity, discriminant validity, and 

internal consistency. Convergent validity analysis in terms of factor loading, Average Variance Extracted 

and values of Composite Reliability. All of the indicator loadings were greater than the suggested that 

is, 0.70 with the highest being 0.891 and the lowest at 0.742 that showed strong correlation between 

observed indicators and their respective latent constructs. The values of Average Variance Extracted on 

all constructs were more than the criterion of 0.50 between 0.634 and 0.748 showing that constructs 

explain most of the variances in their indicators. All composite Reliability coefficients (0.70 and above) 

were found to be greater than 0.873 through to 0.924, and this substantiates the sufficient internal 

consistency reliability. The convergence validity of these indicators essentially is in favor of 

measurement model suitability and construct adequacy of operationalization. 

To evaluate the discriminant validity, Fornell-Larcker criterion and Heterotrait-Monotrait ratio have 

been used. The Fornell-Larcker criterion has an additional condition that the square root of the AVE of 

every construct should be greater than its correlation with other constructs. Findings reaffirmed this 

need of all pairs of constructs as the square of the lowest AVE to the highest inter-construct correlation 

was found as 1.18. The Heterotrait-Monotrait ratio offers a discriminant test of validity that is more 

stringent with a lower value of below 0.85 suggesting that there is enough discrimination between the 

constructs. The constructs were anchored on unique ideas as all values of HTMT were less than this 

point with the lowest value being 0.312 and highest being 0.778. The adequate convergent and 

discriminant validity provide the confidence in the quality of measurement models, which can be used 

in measuring structural models. 

Table 3: Measurement Model Assessment Results 

Construct Loading Range AVE CR α 

Organizational Readiness 0.768-0.857 0.682 0.896 0.862 

Technological Infrastructure 0.742-0.834 0.634 0.873 0.824 

Environmental Awareness 0.791-0.876 0.709 0.907 0.879 

Regulatory Pressure 0.778-0.849 0.671 0.889 0.851 

Financial Resource Capacity 0.756-0.863 0.657 0.884 0.843 

Energy Optimization Potential 0.802-0.891 0.748 0.924 0.901 

Green AI Adoption Intention 0.784-0.872 0.697 0.902 0.871 

Note: AVE = Average Variance Extracted; CR = Composite Reliability; α = Cronbach's Alpha. All values meet or exceed 

recommended thresholds indicating satisfactory measurement quality. 

3.4 Structural Model Results and Hypothesis Testing 

The structural model test tested bootstrapping relationships that existed between latent constructs with  

resamples to derive path coefficients, level of significance and confidence levels. The model is 

considerably explanatory as it has been revealed that the R2 value of 0.734 of green AI adoption 

intention reports that organizational readiness, technological infrastructural presence, environmental 

consciousness, regulatory force, financial ability capacity, and the potential of energy optimization 

simultaneously explain 73.4 percent of the variance in AI adoption intention. This large variance in the 

model explains the rightness of theoretical models and their practical usefulness. Stone-Geisser Q2 

statistic predictive relevance evaluation provided the value 0.612, which is significantly greater than 

zero, which confirms that there is an important predictive ability beyond sample-specific relationships. 
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Fig 3: Statistical distributions 

The path coefficient analysis indicates that there are a few statistically significant relationships that have 

empirical evidence of the propositions presented in theory. The potential of energy optimization has the 

highest direct impact on the adoption intention of green AI with a path coefficient of 0.687 (t=18.42, 

p<0.001), which means that the intentions to increase energy efficiency have a strong impact on the 

intention to adopt. This observation provides significance to the need of specifying and measuring the 

energy that may be saved by an organization through decision-making processes. The positional 

readiness has a significant positive effect with a path coefficient of 0.423 (t=11.67, p<0.001), and this 

indicates that organizational readiness that is already established, containing established AI-related 

capabilities, digital infrastructure, and change management experience have a higher propensity to 

adoption. The fact of the existence of environmental awareness shows a moderate positive correlation 

with the path coefficient of 0.298 (t=7.84, p<0.001), which proves that an increased level of 

environmental awareness and sustainable commitment is the key to considering the green AI. 

There exists a positive and significant impact of the technological infrastructure capacity with a path 

coefficient 0.267 (t=6.92, p<0.001) which substantiates the fact that the sufficient technical grounds 

such as computer facilities, data handling, and digital maturity provide an opportunity to implement 

green AI. The impact of regulatory pressure has a positive effect with path coefficient of 0.184 (t=4.73, 

p<0.001) indicating that external compliance needs and policy incentives play an important role in the 

adoption motivation but with a lower magnitude as compared to internal organizational factors. 

Financial resource capacity shows the lowest but high positive correlation with the path coefficient of 

0.142 (t=3.58, p<0.001), really the availability of funding eases adoption; however, not all aspects are 

based on the monetary factor in making decisions. 

f2 statistics are used to conduct the effect size assessment that offers further information about a practical 

significance of a statistical significance. The potentials of energy optimization has got large effect size 

(f2=0.562), organizational readiness has got medium effect size (f2=0.287), technological infrastructure 
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has got small effect size (f2=0.098), regulatory pressure has got small effect size (f2=0.051), and 

financial resource capacity has got small effect size (f2=0.032). These magnitudes of effect sizes inform 

a common-sense guardian prioritization, so that the advantages of energy efficiency and the 

establishment of organizational preparedness would have the most crucial effect to be adopted. The 

model is highly reflective of the theoretical relationships, but also offers practical application with 

regard to the leverage points that need to be promoted to enhance the adoption of green AI in an 

industrial setting. 

Table 4: Structural Model Path Analysis Results (R²=0.734, Q²=0.612) 

Path β t-value p-value f² 

Energy Optimization → Adoption 0.687 18.42 <0.001 0.562 

Organizational Readiness → Adoption 0.423 11.67 <0.001 0.287 

Environmental Awareness → Adoption 0.298 7.84 <0.001 0.134 

Technological Infrastructure → 

Adoption 

0.267 6.92 <0.001 0.098 

Regulatory Pressure → Adoption 0.184 4.73 <0.001 0.051 

Financial Resource Capacity → 

Adoption 

0.142 3.58 <0.001 0.032 

3.5 Mediating Effects Analysis 

The mediation analysis investigated the presence of indirect effects, in which the organizational 

attributes affect the adoption intention by use of intermediate constructs. Specifically, particular 

attention was paid to energy optimization potential as something that would mediate the connections 

between the organizational capabilities and the outcomes of the adoption. Findings indicate that there 

are important indirect effects that give more insight on how causal mechanisms take place. The indirect 

effects of the organizational readiness on the adoption intention are also significant and significant in 

the form of energy optimization potential, and the coefficient of an indirect effect is 0.274 (bootstrapped 

95% confidence interval: 0.198-0.356, p<0.001). This observation shows that firm preparedness to 

organize is more inclined to identify the prospects of energy efficiency, which consequently encourages 

the use of green AI. The same applies to the technological infrastructure in that it has a high amount of 

indirect impacts with the coefficient of energy optimization potential of 0.189 (95% CI: 0.132-0.251, 

p<0.001) indicating that higher level of technical capabilities lead to more advanced analysis on the 

possibilities of energy optimization. 

There are indirect effects of environmental awareness on adoption in the potential of energy 

optimization (β =0.156, 95% CI: 0.107-0.209, p<0.001) and the organizational readiness (β=0.118, 95% 

CI: 0.074-0.168, p<0.001). These results suggest that environmental consciousness affects adoption in 

various ways and increases the capability formation and opportunity recognition. This mediating value 

of energy optimization potential is specifically large, and it is significant as the variance is explained; it 

is 42.7 in the form of a percentage, which is a significant intermediate mediating mechanism of 

organizational features transferring into adoption behaviors. The above mediating patterns highlight the 

fact that although the need to develop organizational capabilities is crucial, the sustainability teams 

should also be motivated to analyze and report on the opportunities available in achieving energy 

efficiency to decision-makers. Companies ought to invest in making evaluation tools, benchmarking 

research, and developing business cases competencies to measure their possible energy savings and 

characterize technical possibilities into effective strategic narratives. 

3.6 Multi-Group Analysis: Industry Sector and Organization Size Effects 

Multi-group analysis has been used to answer the question of whether the structural relationships differ 

across industry sectors and sizes of organizations and modulates hypotheses of moderation and nullifies 

context conditions. Comparison of industries sectors was done on three major categories, including 

manufacturing (n=134) where the main industries are manufacturing, technology services (n=84), and 

energy production (n=67). An analysis based on multi-group using permutation identified a number of 
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group differences. The correlation existing between the technological infrastructure and the intention to 

adopt is much stronger in the technology services (β =0.412) than it is in the manufacturing (β=0.234, 

p-difference=0.009) and energy production (β=0.198, p-difference=0.003). This trend is consistent with 

the fact that companies operating in the technology industry are more technically sophisticated and more 

in line with infrastructure capacity and strategic focus. Regulatory pressure on the other hand presents 

greater effects on energy production (β=0.347) than manufacturing (β=0.172 and the difference in 

p=0.021) and technology services (β=0.128 and the difference in p=0.007 ) since there is more 

regulatory scrutiny and compliance pressure in the energy sector. 

Analysis was done in the organization size (n=65, n=119, and n=163 small enterprises, medium 

enterprises, and large enterprises respectively). Findings have shown that the effects of organizational 

readiness are higher with the size of the organization with path coefficients of 0.287, 0.384, and 0.512 

in small, medium, and large organizations respectively. The difference between small and large is 

statistically significant (p=0.018) and, therefore, the larger organizations correlate more with the 

positive impact of readiness investments because of better economies of scale, availability of resources 

and learning benefits in the organization. The financial resource capacity reflects the converse and has 

both stronger effects in small (β= 0.267) than in large (β= 0.094, p= 0.036) enterprises, thus funding 

constraints are more binding constraints to resource-constrained smaller organisations. The potential of 

energy optimization shows relatively good results in all types of sizes (0.641-0.718), which proves the 

universality of this motivator in terms of its presence in any organization, regardless of its size. These 

multi-group results present subtlety to any implementation strategy to be used in contextualized 

application acknowledging that the best strategies are diverse in terms of industry settings and 

organizational features. 

Table 5: Multi-Group Analysis by Industry Sector - Path Coefficients 

Path Manufacturing Technology Energy p-diff 

Tech Infrastructure → 

Adoption 
0.234 0.412 0.198 0.003 

Regulatory Pressure → 

Adoption 
0.172 0.128 0.347 0.007 

Environmental Awareness → 

Adoption 
0.321 0.267 0.289 0.624 

Energy Optimization → 

Adoption 
0.718 0.641 0.697 0.412 

Organizational Readiness → 

Adoption 
0.398 0.467 0.412 0.387 

3.7 Practical Implementation Insights from Qualitative Analysis 

Qualitative analysis of interviews can enhance the quantitative results by adding a background of real-

life experiences of the implementation, strategic aspects, and practical issues [53-57]. Thematic analysis 

was able to extract several factors of critical success and lessons of implementation that should be 

considered [58,59]. Effective users of green AI note the executive championship as a value chain, with 

respondents extensively noting the need to retain the support of top management in order to guarantee 

resources, resistances and ongoing drive to progress as the implementation process inevitably 

experiences some negative setbacks [60,61]. According to one of the manufacturing executives, the 

personal commitment of their CEO to sustainability goals helped them invest heavily in infrastructure 

modernization even with other competing areas of investments in the company and the need to make 

quarterly earnings. Technology figures of speech stressed that it is extremely important to define metrics 

and measurement structures at the beginning of the transformation paths, which allows making 

decisions based on data and monitoring the progress and proving the value of the changes to the cynical 

stakeholders. 

There is a considerable difference in implementation strategies in different situations of organization 

and no single route is seen to emerge [62-65]. Upon having developed AI capabilities, organizations 

tend to follow incremental optimization, they systematically discover energy opportunities in the current 
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AI workloads and gradually adopt those changes. Organizations that have been on the AI adoption paths 

earlier on tend to put sustainability into consideration at the initial stages and the AI system is built with 

energy efficiency as a key design factor in comparison with performance goals. Some interviewees 

offered a set up of green AI task forces or centers of excellence involving technical skills, sustainability 

knowledge as well as business expertise to organize transformation programs. Something else was 

identified as a critical success factor which was cross-functional collaboration where successful 

implementations demand cross-coordination between IT departments, sustainability team, operations 

staff, and business unit leaders. The use of siloed approaches is bound to be faced with a setback because 

the competing priorities, lack of great communication, and lack of adequate alignment would hamper 

the progress. 

 

Fig 4: Path coefficients visualization 

Acquisition of skills is one of the issues that need to be addressed throughout the time. Some of the 

methods that organizations use are in house training programs, external consultants, academic programs, 

as well as the strategic recruitment of the niche talent. A number of organizations mentioned that they 

created formal relationships with universities that undertake the research on sustainable AI practices 

and received access to the state-of-the-art knowledge but offer real-world implementation experiences 

to the academic research. Collaboration in the industry initiatives and platforms of knowledge sharing 

are fundamental sources of learning, given that participants have complemented conferences, working 

groups, and collaborative research projects as expediting collective knowledge acquisition and 

eliminating repetitive trial-and-error investigations. The green AI practice is only nascent, and, as such, 

even the most successful organizations still learn and change, placing the importance of humility and 

the willingness to experiment and share an experience in the wider industrial and academic domain. 

The development of business cases in this study proved this as one of the key capabilities that affect the 

successful persuasion of the stakeholders and the success of resource allocation. Good business cases 

do not only state environmental advantages, but also provide business value creation, and it is necessary 

to present green AI not as an ethical imperative but also as an opportunity. Estimation of energy savings, 

gains in operational efficiency, decrease in risks, and creation of reputational values enhances business 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 17-38 

31 

case compelling power. Most of the executives pointed out that, relating sustainability efforts to the 

fundamental business strategy and competitive positioning is more compelling, as compared to 

independent environmental arguments. Companies that deploy green AI to coincide with overall digital 

transformation programs, operational excellence programs, or corporate sustainability initiatives have 

a better traction as compared to those that present green AI as a niche program. It is a strategic 

integration to make sure that the priorities of the organization are in line with those, and, in addition, 

existing transformation momentum and developed change management infrastructure will be used. 

4. Conclusion 

The overall study of the green artificial intelligence implementation in industrial systems by integrated 

evaluation of SWOT assessment and the empirical study provides some important results in advancing 

the theoretical knowledge and practical implementation recommendations. The study proves that the 

implementation of green AI is a complicated organizational change that is impacted by various factors 

that are interrelated taking on technological opportunities, organizational willingness, environmental 

awareness, regulation, and strategies. The empirical evidence has shown that energy optimization 

opportunity, organizational preparedness, and environmental consciousness are major drivers and that 

all three variables have a significant portion of the adoption intention. The SWOT analysis notes that 

the fundamental strengths that have been put across as critical include the available AI infrastructure 

and leadership dedication and points out continuous weaknesses which have been noted in form of 

knowledge lapses and limitations of the legacy system. The external opportunities include market and 

technological innovations favoring sustainable solutions at the cost of threat such as cost of 

implementation and technical complexity of the innovations. 

The structural equation modeling findings offer the good empirical evidence of Green AI Adoption 

Framework where the model has got the R2 of 0.734 and has got the good predictive relevance 

(Q2=0.612). The potential of energy optimization is found to be the best predictor with a path coefficient 

of 0.687, given the significance of stating and quantifying the organization operations in terms of the 

possible potential energy efficiency improvements in the process of making decisions. The readiness of 

the organizations proves its significant impact with a path coefficient of 0.423, which proves the 

assumption that the establishment of AI competencies, digital infrastructure, and change management 

experience expressed in organizations would prove higher propensity to adoption. The positive relations 

are significant with the environmental awareness (=0.298), technological infrastructure (β=0.267), 

regulatory pressure (β=0.184), and financial resource capacity (β=0.142), which prove to be included 

in the multidimensional processes of adoption. The mediation analysis indicates that energy 

optimization potential is an important intermediate mechanism where the organizational capabilities 

change into adoption behaviors and it accounts 42.7% of variance. 

Multi-group analysis does reveal such significant contextual differences with the effects of 

technological infrastructure being more significant in the case of technology services sectors and 

regulatory pressure being greater in the case of the energy production industries. The size of 

organisations moderates most of the relationships with the impact of organizational readiness growing 

larger as the scale of the organization grows, and financial resource pressure tightening its ties on smaller 

firms. These contextual differences underline the necessity of implementing strategies that can be 

adopted in specific situations because there is no universal strategy that can be best applied to the 

situation in the industry and organization. Qualitative data is the complement of quantitative results 

because of the abundant contextual data about the experiences of the implementation, which discloses 

essential success factors such as executive championship, the establishment of clear metrics, cross-

functioning, skill development programs, and strategic business case develop. The convergent analysis 

of both the qualitative and the quantitative results will create a deeper comprehensive insight that is not 

constrained by the single method effect. 

This study works at the level of theoretical development in a number of significant aspects. First, the 

research results in creating and confirming an overall Green AI Adoption Framework that unravels the 

environmental sustainability values and concepts and incorporates organizational change management 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 17-38 

32 

concepts and technology acceptance paradigms, narrowing it down to industrial systems. This model 

adds to the existing technology adoption theories by considering the environmental impact issues as 

core rather than secondary issues, which fill the gaps in the traditional models that provide insufficient 

explanations of the lack of awareness of sustainability requirements. Second, the study contributes to 

the research on the mediation processes in which organizational capabilities stimulate the results of 

adoption and proves that energy optimization potential is an important intermediate construct that avoids 

transformation of technical possibilities into strategic motivation. It contains an insight that narrows the 

existing causal knowledge beyond the models of direct effects, proving the significance of opportunity 

identification and business case elaboration in the process of adoption. 

Third, the definition of contextual boundary conditions via the multi-group analysis serves the 

development of contingency theories that have revealed that the drivers of adoption in the industry 

sectors and organizational scale are different in a systematic manner. The contextualization opposes 

universal adoption models but offers platforms of building specific theoretical frameworks, which 

consider heterogeneity in industry. Fourth, the synthesis of qualitative and quantitative research with 

methodological unification of the SWOT analysis with structural equation modeling and multi-criteria 

decision analysis proves fruitful in evolving the mixed-method research practices in technology 

adoption, and sustainability fields. Fifth, the study adds to the emerging literature in green AI because 

it offers detailed empirical research data in industrial setting, answering the existing preponderance of 

technical computer science points of view by organizational and strategic administration viewpoint. 

Such theoretical developments formulate baseline of further academic research and at the same time 

offer conceptual frameworks to direct the future research avenue. 

The research outcomes produce a number of practical implications to industrial organizations that seek 

the change to green AI. Firstly, systematic evaluation and explicit definition of energy optimization 

potential should be taken as the priority by organizations since this criterion has the strongest effect in 

the adoption decisions. Investments in energy auditing capabilities, benchmarking studies and business 

case development tools are found to be necessary in order to put technical possibilities into convincing 

strategic story forms. Second, organizational preparation by means of capability building programs such 

as workforce education, updating infrastructure and establishment of change management programs 

leaves underpinnings to successful implementation. Firms must not perceive readiness production as a 

tactical expenditure in place of elective preparation, as the capability breach is binding limitations of 

success in transformation. 

Third, such an awareness of the environment and commitment to sustainability at all organizational 

levels can help to adopt it in many ways, both in developing the ability and through opened 

opportunities. Leadership communication, employee engagement programs, and embedding 

sustainability objectives in the performance management systems empower the organizational culture 

in support of green AI initiatives. Fourth, it is essential to have cross-functional collaboration 

mechanisms that will help to find the way to complex transformations that demand coordination and 

interconnecting of technical function, sustainability, operational, and business functions. Specialized 

task forces/centers of excellence that bring a combination of different types of expertise enhance 

learning at a rapid rate without the need to face siloed thinking that is bound to face a hindrance. Fifth, 

it is better to establish context-laden implementation strategies that acknowledge both industry-specific 

and organisation-specific factors to enhance the probability of success. Organizations that use 

technology to benefit themselves must capitalize on the benefits of technical infrastructure, energy 

production organizations should capitalize on sources of regulation, and smaller organizations must deal 

with insufficient financial means by implementing any of the aforementioned approaches gradually, or 

in partnership with other organizations. 

Sixth, organizations ought to seek to integrate strategic green AI programs with larger-scale digital 

transformation programs, operational excellence programs, and corporate sustainability strategies as 

opposed to making green AI an isolated initiative. This integration would guarantee synergy with 

organizational priorities and use the available transformation momentum and change management 

infrastructure. Seventh, creating outspoken measurement frameworks in the initial stages of 

transformation adventure will allow making decisions based on data, tracking the progress, and 
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providing real outcomes to non-believers among stakeholders. The metrics need to compromise 

environmental outcomes in terms of energy use and carbon emissions as well as business performance 

indices like cost savings and efficient use of operations. Eighth, industry collaboration programs, 

knowledge sharing, and educational partnership enhances organizational learning and helps in aid of 

overall progress in sustainability issues. The infantile stage of the green AI practice implies that even 

high-achievers have an advantage in joint learning and the mutual experimentation. 

These policy suggestions are based on the outcomes of the research and should be adopted by 

governmental organizations, regulatory institutions, and professional associations that are interested in 

promoting green AI implementation. To begin with, policymakers ought to initiate strict regulation 

systems comprising of emissions reporting systems, energy efficiency, and carbon prices to establish an 

accountability system outside the organization that creates pressure on organizations to act. Regulations 

should, however, be balanced in set goals of environmental and implementation, that very-high 

requirements or unrealistic schedules may create compliance resistance or unforeseen consequences. 

Second, the governments must also offer financial benefits such as tax credits, subsidies, or special 

financing to those organizations that invest in green AI infrastructure and capabilities. These incentives 

assist in overcoming the costs of entry in the process besides being a positive indicator of a policy 

concerning the development of sustainable technologies. 

Third, subsidizing education, labor development programs such as university courses, professional 

training, and industry certification programs overcome the severe limitations on skills gaps. Solutions 

are faster to get available by the bold public investment in research and development of energy-efficient 

AI technologies, sustainable computing infrastructures, and environmental impact assessment methods. 

Fourth, creating uniform metrics systems, reporting controls and audits provide a system of 

comparability and mitigate the chances of greenwashing. Standards used in the industry make the area 

transparent, benchmark it, and make organizational implementation efforts. Fifth, public-private 

partnerships and industry collaboration programs which can take place through the provision of funding, 

convening power or the provision of platforms help to speed up the process of collective learning and 

dissemination of knowledge. Public goods that result in terms of whole industrial ecosystems are created 

by governmental efforts to facilitate networks of knowledge, best practice repositories, and 

collaborative research projects. 

Regardless of its thorough methodology and strong results, this study has a number of limitations that 

should be mentioned and provide the directions of further research. Firstly, the cross-sectional research 

design views adoption intentions and organizational features at one point in time, which does not allow 

conducting longitudinal studies of transformation patterns, and implementation process outcomes or 

causal processes. The longitudinal panel design currently needed in order to observe how organizations 

can be adopted should be applied in the future so as to understand the factors determining who is most 

likely to succeed in implementing changes, the predictive factors as well as the evolution of 

organizational capability due to transformation processes. Second, the sample is narrow and targets 

eight developed economies that have rather mature AI capacities and environmental policies, which 

restrict the extrapolation to developing economies or regions that have other technological and 

institutional settings. Comparative studies of green AI use in various geographical and economic 

environments would be useful in understanding the contingency of the context and transferability of the 

conditions. 

Third, although the research investigation is on the intentions to adopt, experiences of implementation, 

and strategic motives, it gives minimal exploration on the real effects that green AI projects have on the 

environment. Future studies must utilize impact assessment techniques that are rigorous such as 

controlled experiments, quasi-experimental methods or an extensive before-after evaluation in terms of 

quantifying the energy efficiency, carbon reduction and efficiency increases in operations caused by the 

implementation of green AI. Fourth, the study lays most emphasis on the above organizational level 

variables and comes out with few emphasis towards individual level psychological variables, social 

forces in influencing adoption diffusion or inter-organizational network effects. A more in-depth 

knowledge would be created by using multi-level research designs that study individual, organizational, 

and inter-organizational determinants. Fifth, the paper is general where the adoption of green AI is 
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investigated without particular focus on any type of technologies, areas of application, and strategies of 

implementation. Future studies need to consider adoption trends/factors, implementation results of the 

specific green AI technologies such as energy-efficient algorithms, greener computing infrastructure, 

integration of renewable energy or cyclic economy policies. 

Sixth, although SWOT analysis has useful strategic information, the descriptive level of the framework 

and its qualitative focus does not allow quantification of trade-offs, optimization opportunities, or 

decision algorithms with any accuracy. The SWOT results may be combined with quantitative decision 

analysis such as multi-objective optimization, game theory, or simulation modeling in the direction of 

more advanced strategic analysis in the future research. Seventh, the study explores the adoption of 

green AI through organizational prisms without much focus on ecosystem-wide processes such as 

implications of the supply chain or general transition processes within the industry or the sustainability 

consequences on the society as a whole. Macro-level dynamics of transformation would be shed light 

using system-level studies that use industrial ecology frameworks, approaches based on the life cycle 

assessment methods, or approaches based on complex adaptive systems. Lastly, the green AI is still 

nascent, and, therefore, the technological capabilities, implementation methods, and organizational 

experiences keep changing at a speed. Continuous research initiatives that chronologically monitor 

trends, new practices, and dynamically changing issues are critical in ensuring that the available 

knowledge bases remain up-to-date and valuable towards the process of ensuring further developments 

move towards sustainable AI destiny. 

The green artificial intelligence practices are an urgent issue that requires the focus of contemporary 

industrial systems in the environmental sustainability imperative agenda which is shifting the 

approaches of organizations in creating, implementing, and using AI technologies. Through this study 

it is revealed that there are massive barriers restricting the wide adoption that includes lack of 

knowledge, implementation costs, and technical complexity, but that there are enormous opportunities 

to organizations that are strategic in investing in sustainable AI transformation. The above example of 

internal strength, external opportunities, and the high level of empirical evidence of the interconnection 

between the core drivers and the adoption intentions indicate that green AI can be regarded as not only 

a necessity imposed by the environment but also a strategy enabling the progressive industrial 

companies to evolve. To be successful, there must be complex strategies that combine technological 

innovation, organizational capability growth, cultural change, and strategic alignment that are founded 

on the strong vision of circumstances that mould the implementation avenues. 

The future of sustainable AI requires a concerted effort by industrial-level participants, technology 

creators, policymakers, academic research, and consumers to the civil society. Industrial organizations 

need to internalize the spirit of leadership by committing in the long run towards environmental 

responsibility and proving that those practices which are sustainable only improve, but do not limit 

competitive positioning. Innovation agendas should also focus on energy efficiency and environmental 

sustainability at the same time optimizing performance by the technology developers. The policymakers 

need to put in place enabling regulatory systems, offer relevant incentives as well as platforms of 

knowledge sharing that would speed up the process of working as a unit. Researchers in academia are 

advised to keep on increasing the knowledge with intense empirical study, development of theory and 

innovation of solutions. Collectively, these stakeholder groups will be able to negotiate through the 

volatile overlap of artificial intelligence innovation and environmental care to achieve the 

transformative potential of AI and protect planetary boundaries to this and future generations. 
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