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Abstract 

Unfavorable experiences also present sudden changes in the distribution of clinical data streams, which tend 

to cause significant deterioration in the performance of traditional clinical decision support algorithms. The 

models of artificial intelligence used to date are primarily missing the ability to be generalized across the 

acute perturbations of physiology or system because most of them are not algorithmically resilient. This 

paper presents a Causal Foundation Model, which combines causal representation learning with large pre 

trained multimodal foundation models and digital twin-based simulation to become better robust to adverse 

clinical events. The framework limits latent representations by matching them with underlying causal factors 

by structural causal models and interventional training and a digital twin environment is used to simulate 

controlled adverse events like septic shock, pulmonary embolism and equipment failure. The evaluation of 

model performance was done on intensive care unit outcome prediction tasks given conditions of a normal 

and unfavorable condition to determine that the results were all in a form of mean values with standard 

deviations and ninety five percent confidence intervals. The proposed model was found to have the lowest 

mean penalty error of organ failure score prediction of 0.214 +- 0.003 and Brier penalty mortality prediction 

on the first attempt of 0.078 +- 0.002 significant at a p < 0.01 compared to recurrent and transformer-based 

baselines. The reduction in the performance loss was found to be very significant p = 0.001 very significant 

paired statistical testing confirmed that the major clinical events. These findings indicate that within a context 

of causal constraints, foundation models, and training on digital twins, statistically significant and clinically 

significant increases in resilience, accuracy, and capability in early warning are achieved, which can be used 

to further make clinical-based artificial intelligence systems more reliable and trustworthy. 

Keywords: Resilience, Causal representation learning, Foundation models, Digital twin, Healthcare, Artificial 

intelligence. 

 

1. Introduction  

The occurrence of digital transformation in healthcare has resulted in the popular use of AI-based 

decision support systems [1,2]. These involve the early warning scores in the intensive care to the 

treatment outcome prediction models [2]. The most important attribute of such systems is algorithmic 

resilience, the failure to encounter adverse events or atypical conditions whilst remaining able to 

perform and remain reliable [3-5]. The negative phenomena, e.g. sudden complication [2,6], pandemic, 

uncommon side effects [7-9], commonly make the data distributed differently and put the traditional 

machine learning models off. This weakness became eminently apparent during the COVID-19 

pandemic, as algorithms that had been trained on prior data were unable to deal with new presentations 

of clinical cases and resource constraints, and displayed weak spots. The problem of putting the clinical 

AI in a position to stand up and change with unexpected occurrences is, therefore, a call to action [10]. 

Recently developed innovations are promising in terms of making resilience better [10,11]. The first 

models in medical AI are now foundation models which are large-scale pre-trained models that can be 

transformed to different functions [12-14]. These models, e.g. large language models or multi-modal 
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transformers, learn general biomedical facts using massive data, and allow very high predictive 

performance using data limited in tasks [3,15-17]. It is noteworthy that the direction in which the field 

advanced by 2022 is using medical foundation models that are trained using broad and heterogeneous 

data, and they make breakthroughs in pathology, radiology, and other fields [18-20]. The foundation 

model can generalize under a variety of conditions by virtue of its scale and pre-training which implies 

the possibility of underlying robustness [21-23]. But again, currently models of medical foundations 

have their issues: most of them are trained on small-scaled geographically or demographically 

constrained datasets, because of privacy concerns, and thus may be generalized to under-represented 

groups [9,24,25]. In addition, they are more or less black boxes and they do not have outlined processes 

to process distribution shifts beyond their implicitly acquired processes [26-28]. Therefore, the 

foundation models per se might not be sufficient to provide resilience when quite radically negative 

events occur [6,29-31]. 

Digital twins in the healthcare setting are another paradigm that is emerging. A digital twin is a high-

fidelity virtual model of a real-world system - here a virtual patient - that is coevolved with the real-

world system [32,33]. Medical digital twins (MDTs), though, reproduce the anatomy and physiology of 

individuals as well as medical treatment procedures, making them possible to experiment with 

something in silico and make specific predictions [34-36]. Digital human twins can be used in healthcare 

with the multi-scale data (molecular profiles, vital signs, lifestyle factors) to reflect the condition of the 

patient [16,37-40]. The opportunities are transformational: running what-if with the help of the twin of 

a patient, the clinicians have an opportunity to anticipate the disease progression, optimize the treatment, 

or monitor the initial signs of the worsening state [41-43]. An illustration is; the effectiveness of a drug 

or something bad that is about to happen may be tested using the twin before it occurs in the patient. 

Digital twins can therefore be used to achieve a safe testbed to test system reactions to negative 

incidences - a perfect place to educate and test robust algorithms [44,45]. In fact, AI in combination 

with digital twins has proven a prospective approach; clinical forecasting has been enabled using 

generative AI on virtual patient curves, which have been facilitated by large language models (LLMs) 

[49-52]. Researchers proposed a Digital Twin-GPT (DT-GPT) model which uses an LLM to estimate 

patient health courses in the oncology, ICU, and Alzheimer disease settings [22,30,46-48]. It is worth 

noting that the missing data and noise of DT-GPT were not imputed, and the correlations between the 

variables were realistic, and it significantly improved traditional models by 1-3.4% in errors. It even 

allowed zero shot predictions of untrained variables, a suggestion that it also may be able to process 

new events. These types of digital twins based on LLM were shown to propose interventions and 

eliminate negative events in vitro. These developments highlight the fact that foundation models in 

combination with digital twin simulations can be used to improve predictive accuracy and flexibility. 

Although this has been developed there are still critical gaps. The foundation models are usually the 

correlations learnt in the training data and this does not necessarily hold in case of an adverse event. 

Despite the power of digital twins, they need strong AI brains in order to run them. General data-driven 

models may also fail when an event causes spurious correlations or causes violations of underlying 

assumptions. It is at this point that causal representation learning (CRL) is very crucial. CRL is a new 

area that tries to study latent data representations so that they are manifested in the real causal factors 

and mechanisms instead of simple statistical relationship. A model can distinguish between stable causal 

patterns and accidental correlations by encoding cause-effect associations e.g., that a particular 

biomarker causes organ functioning to deteriorate. This is essential to out of distribution robustness: as 

the conditions of the environment vary, the causal relationships tend to be unchanged, but superficial 

correlations change. Inclusion of causal learning can therefore give it algorithmic resilience. According 

to previous studies in the field of healthcare ML, causal machine learning has a potential to overcome 

the issues of interpretability and biased datasets. Nevertheless, small and structured problems or mere 

simulated data have been restricted to most causal ML methods to date. The incorporation of CRL into 

high-capacity models and high-value data, e.g. high-dimensional EHRs, is not easily achievable and it 

has not been fully studied.  

Towards the best of our understanding, there is not a complete framework that is currently integrated 

that incorporates foundation health models, causal representation learning and digital twin simulations 
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in addressing algorithmic resilience. Our study addresses these gaps through the creation of a new 

Causal-Foundation Model (CFM) of healthcare and its analysis in terms of resistance to adverse events 

with the help of digital twins. The specific objectives are: 

1) To solve a methodology of causal representation learning on a large foundation model, and have 

the latent features of the model reflect both expert knowledge and causal graphs of the clinical 

system. 

2) To have a digital twin simulation environment that is able to produce and inject adverse events 

(e.g. acute clinical events or system shocks) both to augment training and to rigorously stress-test 

models. 

3) To compare the performance of the proposed CFM with predictive tasks in normal and adverse 

circumstances with that of baseline methods to assess enhancements in the algorithmic resilience, 

and in this way to measure improvements. 

4) To examine the acquired representations and instantiate behaviors in order to determine whether 

causal interpretability and clinically inferences have been reached. 

This paper offers a number of new contributions to the literature: 

1) We present the first systematically integrated framework to accomplish robust clinical AI using a 

combination of foundation health model and causal representation learning and digital twin 

simulation. This integrates three hitherto disparate fields of research - large-scale trained models, 

causality, and virtual patient simulation - in an effort that comprehensively enter resilience 

research. 

2) This is a novel deep learning framework which incorporates a structural causal model inside a 

transformer-based foundation model. We offer a formulation in which latent variables are 

associated with significant clinical variables (e.g. "infection severity" or "organ reserve"), which 

is the cause of both observed data and outcomes. This is in the best of our knowledge the first 

instance of learning causal representation on scale to model patient trajectory. 

3) This is a proposal of a simulation environment that mimics patient-specific adverse events based 

on a digital twin. This involves mechanistic modeling of the causal influence of an adverse event 

(such as development of sepsis) on vital signs, lab outcome, and patient outcome curves. The 

simulator can be used to generate semi-synthetic datasets with ground-truth causal effects, which 

the model is trained on and assess the resilience of the model quantitatively (because we can 

compare the model-predicted effects of do-interventions to the true known effects). 

4) We specify algorithmic resilience measures and measure algorithms in different situations. The 

index of Resilience (RI) and associated statistical tests are presented to measure and test the 

performance of a model following an unfavorable event compared to the model prior to the event. 

Our experiments can prove that CFM has better RI than baselines and also statistically significant 

differences can be made. We further demonstrate that CFM is capable of detecting the early 

indicators of unfavorable events and keep the predictions calibrated, which is highly essential to 

patient safety. 

5) Our system also offers the interactive explanation interface as we use the language understanding 

of the foundation model. By asking the digital twin (through the foundation model natural 

language response) why the model is predicting a particular deterioration clinicians can gain 

knowledge on the factors that are causing the prediction (e.g. why the model predicts a particular 

deterioration). The model was presupposing that the cardiac arrest will occur within 2 hours 

because the blood oxygen drop of the patient happened. This takes us a step further of explainable 

and credible AI, which is aligned with desires of AI that clinicians can question in high-stakes 

environments. 
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2. Methodology 

This section involves the description of the suggested approach to the resilient Causal-Foundations 

Model development and testing. The strategy comprises three fundamental aspects: (i) an architecture 

and causal representation learning of a foundation health model, (ii) a digital twin simulation platform 

of adverse events, and (iii) a collection of evaluations measures and statistical techniques to measure 

algorithmic resilience.  The strategy model relies on deductive causation theory to establish a connection 

between an event and its antecedents, thereby enabling predictive analytics. The model is based on the 

deductive causation theory and establishes the relationship between an event and its antecedents, thus, 

making it possible to predict the analytics. 

Foundational Model Backbone 

We have a healthcare-specific foundation model at the center of our strategy. Our model is a continuation 

of a sequence model trained on a large corpus of electronic health records (EHR) and clinical texts based 

on a transformer. In particular, we start our model with BioM a 1.3 billion-parameter biomedical 

Transformer which has been pre-trained on multi-source health data (clinical notes, medical literature, 

and time-series vital measurements). This makes the model have a deep background on the medical 

terms and the normal flow of patients. Its architecture is sequence-to-sequence where a longitudinal 

history of a patient is considered as a sequence of observations (e.g. time-stamped laboratory results, 

symptoms, interventions) and forecasts or prediction of outcomes are generated. 

Causal Latent Layer 

This model is used to inject causal reasoning into the foundation model by adding a causal latent layer 

Z. We posit that each patient’s 𝑋 and outcomes 𝑌 are generated from an underlying set of latent variables 

𝑍 = 𝑍1, 𝑍2, … , 𝑍𝐾, each corresponding to a meaningful clinical factor (for example, 𝑍1 = “infection 

severity”, 𝑍2 = “immune response level”, etc.). We assume a structural causal model (SCM) where 𝑍 

causes the observed clinical measurements 𝑋 and also directly influences outcomes 𝑌  (such as mortality 

or recovery). This can be summarized as: 

• 𝑍 →  𝑋: Latent health state drives what we observe (lab values, vital signs). 

• 𝑍 →  𝑌: Latent state also drives the outcome of interest. 

We combine this into the model by defining an encoder into an approximation of 𝑍 of the observed 

sequence 𝑋 and a decoder into outcome prediction, given an approximation of the 𝑍 of the current 

sequence. Notably, For instance, if 𝑍1 and 𝑍2 are independent causes, the model’s prior over 𝑍 should 

factorize as 𝑝(𝑍1, 𝑍2) =  𝑝(𝑍1) , 𝑝(𝑍2). We think of designing the prior distribution of the prior, p(Z), 

as a mixture or multivariate diagonal Gaussian, or a mixture of Gaussians that is conditioned on the 

known medical risk factors. 

Function Objective 

Training the CFM: This is done by placing both the observed data reconstruction and outcome prediction 

in one end-to-end differentiable model. We use variational inference approach. The encoder 

(parameterized by 𝜙) produces an approximate posterior 𝑞 𝜙(𝑥), and the decoder (parameterized by 𝜃) 

gives likelihoods 𝑝𝜃(𝑧) and 𝑝𝜃(𝑥)). Our loss 𝐿 combines a reconstruction term, an outcome prediction 

term, and a causal regularization term 

𝐿(𝜃, 𝜙)   =   −𝐸𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃( 𝑥 ∣ 𝑧 )]  − 𝐸𝑞𝜙(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜃( 𝑦 ∣∣ 𝑧 )]   

+ 𝛽 𝐷𝐾𝐿 (𝑞𝜙( 𝑧 ∣ 𝑥 )   ∥  𝑝(𝑧)) +  𝜆 𝑅𝑐𝑎𝑢𝑠𝑎𝑙(𝑧, 𝐺) , (2) 
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where the first term encourages the latent z to explain the observed data 𝑋 (unsupervised reconstruction 

of input features), the second term ensures 𝑍 is predictive of outcome 𝑌 (supervised learning), and the 

third term is a Kullback–Leibler divergence regularizer that aligns the posterior to the prior 𝑝(𝑧) 

(preventing overfitting, with 𝛽 a weight). The final term 𝑅𝑐𝑎𝑢𝑠𝑎𝑙(𝑧, 𝐺) is a causal regularizer guided 

by a prior causal graph 𝐺 or causal assumptions. For example, if domain knowledge says that “infection 

severity” 𝑍1 and “cardiac function” 𝑍2 are independent latent causes, we add penalty if the learned 𝑍1 

and 𝑍2 become correlated in the model. 𝑅𝑐𝑎𝑢𝑠𝑎𝑙can be implemented as a distance between the 

covariance of latent factors and a diagonal matrix (encouraging independence), or via contrastive 

learning that ensures each 𝑍𝑘 aligns with a known factor. We set 𝜆 (and 𝛽) via cross-validation, 

balancing model fit with causal structure enforcement. The above training objective is optimized with 

stochastic gradient descent on a dataset of patient trajectories. 

Interpretability through Attention and Prompting  

There is an inherent feature of the foundation model of having a multi-head attention within its 

transformer layers that highlight what the model is attending to in each instance of making a prediction 

out of the input feature. What we use this as an interpretability there are attention weights at a single 

time-step that are extracted to determine the strongest variables in terms of their effects on making a 

given outcome prediction. In addition to this, our model is constructed based on a language-model 

backbone, and therefore, we can use prompt-based explanations. When performing inference, we may 

result in feeding a prompt, i.e. in: "Explain the factors leading to the adverse outcome of this patient”. 

It uses its language, and causal latent space to produce an explainable description (e.g.) by the human. 

The model indicates a high risk of septic shock since it has indicated a persistent increase in the levels 

of lactate and a decrease of blood pressure that suggested worsening of the infection despite using 

antibiotics.  This resembles the chatbot feature in DT-GPT, whereby, an LLM-based twin may answer 

questions concerning the key variables and defend forecasts. The training of our model involves text 

outputs at times in explaining prompts to refine this better: simulated domain-based explanation as 

silver-standard data. 

The Simulation of Adverse events in digital twin. 

Simulation environment A simulation environment with controlled adverse events is created to train and 

evaluate algorithmic resilience. There are two levels to the simulation: 

Patient-specific Digital Twin: an individual physiological model of patient baseline and normal course 

development. 

Adverse Event Injection: a is a method to model an external event or shock to the patient that causes a 

causally realistic perturbation of the patient model. 

Baseline Virtual Patient Model 

In each case of a actual patient record within our dataset, we recreate it as a digital twin which reflects 

important characteristics of the patient. It involves a computational model of clinical process and major 

organ systems used in the case of a disease (ICU in our case). We used open-source physiology 

simulators (including derived models to MIMIC-IV and expert text) to design some differential 

equations to model vital signs (heart rate, blood pressure, oxygen saturation, etc.) and some simple 

pharmacokinetic models to apply interventions (like vasopressors). This twin is parameterized to ensure 

the ideal scenario indeed, when there is no adverse event, the outputs of this twin are stochastically the 

same as the actual patient observed. (within noise bounds). Essentially, the twin is a generative model 

for time-series data, where 𝜃are patient-specific parameters learned from data. 

Adverse Event Modeling 
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An adverse event is defined as an exogenous intervention of an action 𝑑𝑜(𝐸 =  1) used at a particular 

time te in the twin. As an example, E may be a report of the onset of ventilator-associated pneumonia 

in an ICU patient. In the case of occurrence of E, we make alterations in the equations of state of the 

twin in a predetermined causal way (e.g. at te, set bacterial load high, which in turn amplifies 

inflammation indicators, fever, has an adverse effect on respiratory functionality). To every negative 

occurrence input there is a model of causal influences on the patient condition. Three prototypical 

adverse events in the ICU setting were implemented by us:  

Septic Shock (Infection) - at 𝑡𝑒 , the trigger of an infection leads to a cascade: increasing temperature, 

high heart rate, lowering blood pressure, lactic acidosis, and resulting in dysfunction of multiple organs 

in the case of failure to act.  

Acute Pulmonary Embolism (PE) - a sudden blockage in pulmonary circulation at 𝑡𝑒 leads to abrupt 

hypoxemia (drop in 𝑂2 saturation), increased heart rate, and potential cardiac arrest.  

Unexpected Equipment Failure (data artifact scenario) – at 𝑡𝑒 , the arterial line for blood pressure fails, 

causing the blood pressure readings to flatline or become noisy (to test how the model handles corrupted 

input). 

These were chosen to represent both clinical and technical adverse events. For each event type, we 

derived the causal graphical model of how it propagates through patient physiology.  The simulation 

therefore generate one paired trajectory of each of the patients; a counterfactual (with the adverse event) 

and a baseline (without the adverse event) one. This enables one to estimate real causal effects of the 

event on outcomes which is useful in estimating the accuracy of the model (see Section 2.4). 

We simulated a semi-synthetic data by executing the twin simulations on our cohort of patients. We take 

for each patient of a twin, - Trajectory without event: X noE (t) Y noE for 0 = 0 to T. - Trajectory with 

event: It represents for example XwithE (t), YwithE where an event E is added at some time te. 

The result Y might be in the form of a 2-outcome event (e.g. survival vs death by end trajectory) or a 

continuous result (e.g. severity). In our ICU case study, we set the score of an organ failure, which 

occurs at time T = 48 hours to be denoted as Y. The fact that the disparity of the indicator of the 

occurrence of a bad event, such as YwithE and Y noE of the same patient, is an effective method of 

obtaining the causal outcome of this bad event. At the population level we compute a bearing, the 

Average Causal Effect (ACE) of the occurrence of event E on outcome Y: 

𝐴𝐶𝐸(𝐸 → 𝑌) = 𝐸[ 𝑌 ∣ 𝑑𝑜(𝐸 = 1) ] − 𝐸[ 𝑌 ∣ 𝑑𝑜(𝐸 = 0) ], 

where the expectation is on the population of patients. This model-predicted ACE can be compared to 

the implied ACE of this ground truth ACE, because it is a measure of causal fidelity. 

The fact that the digital twin simulations do not only present training data with more variations 

(discovering the model to unfavorable conditions in the course of training), but also act as a test harness. 

Adverse events that occur when the trained model is tested can be unseen, and by introducing them, we 

can test the extrapolation ability of the trained model. 

Training Procedure 

Preparation of Data  

Our research considers a mix of real-world data (MIMIC-IV database) of ICUs and the simulated twin 

data. We obtained 20,000 high granularity ICU stay vital sign records and outcomes out of MIMIC-IV. 

This realistic data makes sure that clinical realism is achieved under normal conditions. We added to it 

5000 simulated adverse event cases (randomly chosen patients in the real data were virtually inoculated 

with an adverse event in the twin). The input variables consist of 30 time-series (heart rate, blood 

pressure, labs, ventilator settings, etc.) variables, and these are updated on an hourly basis. As stated, 

there are results which are measured at 48h, Y. Each feature was then normalized to a zero-mean and 
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unit-variance-per-sample and we used forward-filling to handle small missing values (The foundation 

model is resistant to some missingness as it can learn through context). 

We divided the data into training (70%), validation (15%), and test (15) on the basis of each patient to 

prevent overlapping. Simulation of new events in deployment was only preached on training and test 

sets (including none in validation) of adverse events. 

Model Training 

We were training the CFM with the loss of Section 2.1. Adam optimizer (learning rate of 1 x 10 -4 ) was 

used to optimize in 100 epochs. Preventing overfitting Early stopping on the set of validation log -

likelihood of results. The grid searches selected hyperparameters of 𝛽  = 0.1, and to bypass causal 

structure, a small value of the hyperparameter of the form of the grid, which was lax, determined that 

the hyperparameter needed should be set to 0.1, which equals 0.01. It was trained on a mixed precision 

GPU of NVIDIA A100. The computationally heavy fine-tuning of the foundation model was -1 epoch 

was about 2 hours - and stable due to the large pre-training (we did not see mode collapse with VAE, 

most likely due to the good initialization of the pre-trained weights).  

Another proxy metric of resilience that we periodically evaluated during training was a minibatch 

performance on event compared to no-event samples that were simulated: performance on event vs. no-

event simulated samples. This did not run with gradient updates, but it was monitored in order to confirm 

that the model was actually improving in terms of operating in event situations. We observed that the 

addition of simulated adverse events to training data was a great contributor to allowing the model to 

attenuate spurious correlations. As an example, during initial training, the model has attached to the 

time of ICU admission as an outcome predictor (due to the higher level of its subsequent data). However, 

with the exercise of observing cases in which an undesirable event may occur randomly, the model 

acquired an invariant representation that concentrated on physiological indicators as opposed to absolute 

time. 

Baselines 

There are several baseline models that are trained and compared: - LSTM (Long Short-Term Memory) 

network with the use of the same input features, but trained to predict Y. This is a typical sequential 

model that does not have foundation pre-training or causal aspects. - Transformer (no-causal) The same 

architecture as our foundation model but causal latent layer and pre-training are removed. This evaluates 

the advantage of pre-training and causal regularization. - Foundation-only model the same as our model 

with a value of 0 on all of the (even though the model does not include events) and no train simulated 

events. This separates both the effect of causal learning and data augmentation. - Causal inference 

baseline A two-step method in which we first learn a causal graph on the features based on any of the 

known algorithms (PC algorithm on training data) and later learn predictions based on a causal model 

(do-calculus on the learned graph). This point is not ML based but offers some opinion on the 

performance of the pure causal approach. 

Validation is carried out to tune all the baselines using their best hyperparameters. We highlight that we 

have made comparisons with models of similar size/complexity where it is possible. 

Resilience Evaluation Metrics 

In our experiments, we use some measures to compute algorithmic resilience: 

Prediction Error (PE): Mean Absolute error (MAE) and Brier score have been adopted to value the 

actual error in prediction of continuous and binary results in both normal and adverse conditions. Lower 

is better. 

Resilience Index (RI): This measure allows one to describe the relative decline in performance because 

of an event that is adverse. The following variables, relative to model  m and event type e are defined: 
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𝑅𝐼𝑚(𝑒) = 1 −
𝑃𝐸𝑚(𝑤𝑖𝑡ℎ 𝑒) − 𝑃𝐸𝑚(𝑛𝑜 𝑒)

𝑃𝐸𝑚(𝑛𝑜 𝑒)
  

Where PE m (with) represents the error in predictions on the scenarios of event e, PE m (no e) 

represents the error in predictions of scenarios where e never occurs. RI is between -infinity 

and 1 (1 indicating no performance loss whatsoever under the event; 0 indicating increase in 

error 100%, in the negative case, performance increases the error more than twice). The more 

the RI, the greater the resilience. 

Causal Accuracy (CA) 

In the case of our digital twin, ACE of every event on the outcome is available ground-truth, 

thus, to measure how the model models this effect we propose the Causal Accuracy measure. 

We calculate and subtract models of the expected outcome of model m, which is represented 

by the predicted results of model m, namely, 𝑌̂𝑚, which is computed as follows: 

Timely Warning Rate 

In the case of adverse events, which result in bad outcome, we examine whether the risk of 

outcome number Y predicted by the model increased prior to outcome occurrence (equivalent 

to early warning). We compute the probability proportion of the events within a time range of 

events after which the model predictive probability of the occurrence of bad outcome is greater 

than some threshold after the occurrence of that event we refer to as E. The impact of 𝐸 in 

prediction should be reflected on a strong model within a short period of time. 

Statistics Significance 

Paired t-tests (non-normal paired t-tests are Wilcoxon signed-rank) (noE vs withE) are used to 

compare the error on paired trajectories (noE vs withE) of each model. We as well compare 

our model vs baselines on difference in errors. The level of significance (p<0.05) is used to 

determine the performance differences that are not probability based. 

3. Results and discussions 

Overall Predictive Performance:  

Table 1 below shows the overall project predictability. The first thing we do is to ensure that CFM can 

attain competitive accuracy in standard (no adverse event) environments. The tabular summary of the 

predictive performance on our model and baselines in the task of predicting the outcome of the ICU 

considers the normal-condition test set (no event introduced). 

Table 1. Predictive outcome on 48h ICU outcome prediction in an environment with no negative incidences. Among others, 

lower MAE and Brier score is good performance. Figures are plus and minus values +- std. Best values set in bold. 

Model MAE (Organ Failure Score) Brier Score (Mortality) 

CFM (ours) 0.214 ± 0.003 0.078 ± 0.002 

Foundation-only 0.223 ± 0.004 0.081 ± 0.003 

Transformer (no causal) 0.239 ± 0.005 0.089 ± 0.003 

LSTM 0.247 ± 0.006 0.094 ± 0.004 

Causal Graph Model 0.301 ± 0.010 0.120 ± 0.007 

 

As it can be observed in Table 1, under normal conditions, our CFM has the highest performance both 

in continuous and binary outcome prediction. In the case of organ failure score, the MAE of CFM is 

lower by a large margin (0.214) as compared to the LSTM, (0.247) and plain transformer, (0.239) 

(p<0.01), in both cases. The foundation-only (that makes use of pre-training but no causal regularization 

and no augmented data) is second-best with MAE 0.223, indicating that the large pre-trained knowledge 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 39-60 

47 

itself is already advantageous. But more spearheaded by the addition of causal representation learning 

and training on simulated situations (our full CFM) results in an extra reduction of about 4% over 

foundation-only in terms of MAE. This suggests that causal constraints enhanced generalization even 

in natural environments, which probably happened by avoiding that overfitting to spurious relationships. 

The worst one is the causal graph model (hand-crafted causal inference) whose error rate is significantly 

higher- which is expected, as the exercise is rather complicated and we do not know much about it, so 

a simple graph cannot explain all the information. 

 

Figure 1: The comparative bar diagram illustrates the comparative mean absolute error of the evaluated 

predictive models under normal non-adverse clinical conditions. The Causal Foundation Model 

demonstrates the lowest prediction error indicating superior baseline forecasting fidelity. The statistical 

difference between CFM and LSTM is significant with p < 0.01 confirming that the causal latent 

regularization enhances prediction stability even before perturbation effects occur. 

Similar is the ranking of Brier score in case of the binary mortality prediction (a secondary outcome 

that had 12% prevalence in test data). The Brier of CFM is the lowest, meaning that it has well-calibrated 

probabilities (0.078 as compared to LSTM (0.094)). It is also interesting to note that the foundation-

only model is relatively similar to CFM (0.081 vs 0.078), suggesting that, even without causal training, 

the foundation model had learnt valuable patterns - possibly due to its wide pre-training that covered a 

wide range of ICU notes. However, once again CFM has an advantage in both of these measures making 

it a state-of-the-art in predictive accuracy. The above points give a very sound basis: at least our model 

is as precise as the current techniques when something strange does not occur. Next, we look at the 

performance of such models in situations where bad events set in. 

Resilience Under Adverse Events 

We evaluated each model on the test set with adverse events simulated. Each test patient’s twin was 

subjected to one of the three event types (septic shock, pulmonary embolism, or equipment failure) at a 

random time in the first 24h of the ICU stay. The models, unaware of if/when an event occurs, make 

their 48h predictions based on the input data sequence (which reflects the event’s effects if it happens).  

Table 2 presents the results broken down by event type. For brevity, we show MAE for organ failure 

score and the RI; mortality results showed analogous trends. 
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Fig 2: Model Calibration Performance Using Brier Score is used to demonstrate the probability accuracy 

of outcome predictions in which the x axis is the various models that are under evaluation and the y axis 

shows the Brier score of between 0 and 1 with a lower score being better calibration. The Causal 

Foundation Model has the lowest Brier score of about 0.078 which depicts the nearest relationship of 

the predicted and actual probability of clinical deterioration. The foundation only model records a 

slightly high score of about 0.081 as compared to the transformer and LSTM models of about 0.089 and 

0.094 respectively which indicates possibility of over or under estimation of data. The results of 

statistical comparison prove that the difference in the calibration of the Causal Foundation Model and 

LSTM is significant with p less than 0.01. Probability calibration which is accurate clinically is essential 

since escalation ventilation vasopressor must be initiated and decisions made on ICU staffing based on 

accurate estimates of the risk instead of categorical alarms. Thus the figure shows that the Causal 

Foundation Model gives predictability and dependability on magnitude of risks necessary in safe clinical 

implementation. 

Table 2. Model performance under adverse events vs. normal conditions. “No Event” columns are errors 

with no adverse event; “Event” columns are errors with the event introduced; Δ = absolute error 

increase. RI = Resilience Index (proportion of performance retained; higher is better). Results are 

averaged over instances of each event type. 

Model Septic 

Shock 

– NoE 

MAE 

Event 

MAE 

ΔMAE RI (↑) Pulm. 

Embolism – 

NoE MAE 

Event 

MAE 

ΔMAE RI (↑) Equip. 

Failure 

– NoE 

MAE 

Event 

MAE 

ΔMAE RI (↑) 

CFM (ours) 0.220 0.236 +0.016 0.927 0.212 0.225 +0.013 0.939 0.215 0.226 +0.011 0.949 

Foundation-

only 

0.229 0.263 +0.034 0.851 0.222 0.250 +0.028 0.875 0.224 0.248 +0.024 0.903 

Transformer 0.244 0.296 +0.052 0.786 0.238 0.284 +0.046 0.808 0.240 0.270 +0.030 0.885 

LSTM 0.252 0.310 +0.058 0.770 0.247 0.300 +0.053 0.785 0.249 0.276 +0.027 0.891 

Causal Graph 0.310 0.380 +0.070 0.774 0.303 0.370 +0.067 0.779 0.305 0.328 +0.023 0.925 

 

Based on Table 2, one can make it clear that CFM demonstrates the least performance deterioration in 

all the circumstances of adverse events. One such example is under Septic Shock events, the MAE of 

CFM only propels by 0.016 (0.220 to 0.236) when compared to the next best (foundation-only) of 0.034 

and the LSTM of 0.058. Compared to other standards, CFM still has the retention of the accuracy of 

about 93% (RI = 0.927) in the cases of the septic shock, whereas the retention of the baseline transformer 

is about 78% (RI = 0.786). This is regular in Pulmonary Embolism (RI 0.939 vs 0.808 transformer) and 

Equipment Failure incidences (RI 0.949 vs 0.885). The equipment failure (data corruption case), 

particularly interestingly displays higher RI for all models (including LSTM over 0.891), which is 

probably due to the fact that sensor breakage is simpler to detect (flatline values) and all of them can be 

trained to either ignore or sound an alarm. Nevertheless, CFM wins with RI = 0.95, and an occurrence 
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of such noise has little to no effect, it assumed the noise was an artifact and used other information 

sources (such as the heart rate) to determine the state of the patient. 

 

Figure 3: Comparison of the bar diagrams depicts the resilience index of each model in case of simulated 

conditions of septic shock. The Causal foundation Model preserves about ninety three percent of its 

predictive value compared to differences between conventional recurrent models which preserve 

between seventy and ninety percent only. The significance value between the groups is significant at p 

< 0.001 showing the existence of a toxifier robustness of causal latent structure. 

The resilience advantage of CFM is proved with the help of statistical analysis. Paired errors comparison 

of event vs without vs error with each model indicate that the CFM error increase is significant smaller 

(p<0.001) compared to all other models in case of septic shock and PE events. In the case of equipment 

failure CFM is also not as advantageous (foundation-only model lies within a range of 2% RI), and 

those variations are slightly significant. This is not surprising, since with even simple models one can 

be already made aware of a blatant sensor drop-out when its coding is done right. Nevertheless, when 

it comes to sophisticated physiological decompensations such as shock or embolism, CFM clearly 

comes out. Another outstanding result is the moderate performance of the foundation-only model (RI 

=0.85-0.88). The foundation model was also more successful than non-pretrained models, which implies 

that pre-training on heterogeneous data provided some robustness. This is in accord with notes about 

literature that big pre-trained models are more capable of adding and taking out data noise. As an 

example, the foundation model could have seen such trends of sepsis in its pre-training, hence 

generalizing, but not as well as our causally-regularised version. The findings of our paper support the 

fact that foundation models present a powerful baseline of the resilience but that causal fine-tuning can 

take them to the next level. 

Surprisingly, the RI of the causal graph baseline is comparatively high (around 0.77-0.78 in the case of 

the clinical events, and it is also similar to the LSTM with the RI of about 0.77). Its absolute errors are 

severe although since it is always high in the conditions of no-event and event, its relative decrease is 

moderate. This implies that a knowledge-based causal model will remain mediocre at all times - it does 

not decline to a significant degree because it was not a very refined one in the first place, without any 

finesse. Conversely, data-based models may be very precise and yet weak (such as LSTM decays to 77-

percent of initial functionality in shock). The best of both is found in the fact that CFM is not only high-

accurate, but also low-fragile. Figure 3 shows additional resilience by plotting time-course of model 

predictive probability of a sample patient that suffered a septic shock at hour 12. 
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Figure 4: Comparative Temporal Risk Response Curve depicts the estimated probability of clinical 

deterioration with time in which the x axis is the number of hours of elapsed clinical time and the y axis 

the risk score (calculated) of one which is the probability of organ failure. The negative occurrence is 

brought out at hour twelve that causes a physiological decline spike. In the Causal Foundation Model, 

there exists an immediate increase in the forecasted risk between about 0.12 and 0.78 the first hour of 

the occurrence and either side with confidence intervals that can be regarded as stable. Compared to the 

LSTM model the risk elevation has shown delayed activity that is slowly realized between 0.11 to 0.64 

over a period of approximately six hours depicting slower pathophysiological transition recognition. 

The comparison of time to risk escalation statistically indicates that there is a big difference which is 

less than 0.001 which proves that the Causal Foundation Model is better at detection sensitivity. This 

previous inflection is clinically associated with earlier identification of decompensation which is vital 

because every hour of missing an intervention of shock states is associated with a high risk of mortality. 

As such this finding shows that the Causal Foundation Model provides objective early warning benefit 

and a clinically significant predictive responsiveness in acute deterioration occurrences.  

All the models show that there is low risk of failure before the occurrence. The Saturation in oxygen 

and blood pressure of the patient drops immediately after hour 12. The risk spikes in CFM model are a 

real-life depiction of the model as it predicts high risk by hour 48 and the risk is sharply predicted in 

hour 1 correctly. The foundation-only model also also increases but not as fast and to a lower extent. 

The LSTM, however, itself reacts too slowly - it does not add any risk prediction until the results are 

nearly too late. False alarms CFM sounded at hour 13, LSTM sounded on the hour 18. The advantage 

of causal awareness is that CFM was aware of such pattern of vitals drop resulting in bad outcomes and 

immediately refuses to adjust its prediction when LSTM had to see more data before making 

refinements. 

We summed up such early warning behavior: CFM sounded an alarm (predicted risk >50%) within 2 

hours of event onset in 82% of cases of septic shock, versus 45% of LSTM. The additional hours may 

very well save lives and so it is crucial to consider how patients might be affected by our approach and 

patient safety. Causal Accuracy (CA) is also a measure where predicted outcomes ACE are compared 

to true ACE. In the case with shock, the actual ACE of the 0-100 scale of organ failure severity was + 

20 (i.e., on average the shock increases the severity of the organ failure by 20 points). CFM had a 

projected increase of +18.5 on average, which was in comparison to LSTM projected increase of +10 

(in which the increases are underestimated) and foundation only projected +15. The causal error of CFM 

therefore was 1.5 divided by 20 (7.5%) very small compared to the LSTMs 10 (50%). This shows that 

CFM did not only expect an effect, but he approximated it in the right way. The foundation model also 

performed quite well, which suggests that large models implicitly predict certain causal effects, but 

again the CRL fine-tuning was able to better bring that prediction to be consistent with the actual 

causality. 
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On the perspective of statistical significance, the differences in RI between CFM and each of the bases 

of septic shock and PE events are quite significant (p<0.001, paired t-test on patient-level difference in 

errors). In case of equipment failure, CFM vs foundation-only marginally (p =0.05), and vs others 

p=0.01. These tests provide one with an assurance that the observed resilience gains are actual and not 

by chance. In a short, our CFM did not deteriorate to 75-88 but maintained 92-95 percent rate of 

performance during severe events as compared to conventional models. This confirms our main 

hypothesis based on the fact that foundation models and generative learning based on causality with 

training of digital twins are more resilient. Then, we explore what the learned representations and model 

behaviors are, which were involved in the gains made by the model. 

Interpretation of Causal Representations 

The most important asset of our method is that it provides interpretable representations and model clues, 

which is why it is easier to explain the mechanism that caused the resiliency. We analyze three aspects:  

(a) the clinical factors latent space correspondence. 

(b) event related shifts are weight matrix and features importance. 

 (c) the natural language explanations that are given by the model. 

(a) Latent Factors Alignment: Our design aims to understand that the differences in infection levels or 

cardiac performance are meaningful factors that will be represented by 𝑍 (infection severity or cardiac 

functioning). To prove this, we investigated correlations of learned latent dimensions and familiar 

clinical variables. Table 3 demonstrates the Pearson correlation of each latent Z 𝑍 𝑘 (at the final time 

point) to a group of reference clinical measurements in each case of septic shock. 

Table 3. Resulting learned latent variables correlation of learned latent variables to key clinical 

characteristics in the situations of septic shock (top 5 correlations presented, and p denotes p<0.001). 

This is an indication of semantic correspondence of latents with clinical concepts. 

Latent 𝒁𝒌 Top Correlated Clinical Feature 𝒓 (correlation) 

𝑍1 (Infection/Inflammation) Procalcitonin level 0.83* 

 IL-6 (inflammatory cytokine) 0.79* 

 Body Temperature 0.75* 

𝑍2 (Hemodynamics) Mean Arterial Pressure (MAP) –0.68* 

 Norepinephrine dose (vasopressor) –0.64* 

 Heart Rate 0.60* 

𝑍3 (Respiratory Function) 𝑃𝑎𝑂2 /𝐹𝑖𝑂2 ratio (lung function) 0.81* 

 Oxygen Saturation (𝑆𝑝𝑂2) 0.78* 

 Respiratory Rate 0.65* 

𝑍4 (Organ Injury) Serum Lactate 0.70* 

 Creatinine (renal function) 0.66* 

 Total bilirubin (liver function) 0.62* 

𝑍5  (Unassigned/Noise) (no strong correlation >0.3) — 

Table 3 shows that indeed the latent dimensions in the model were able to reflect different clinical 

concepts. As an example, latent 𝑍1 is associated with procalcitonin (a sepsis marker) and fever (r= 0.83 

and 0.75, respectively) indicating that Z1 is a measure of the level of infection/inflammation (low level 

indicates better hemodynamics, thus,, lower MAP, thus, higher vasopressors are needed). 𝑍2  is 

associated with respiratory impairment (strong correlation with oxygenation measures), 𝑍3  with 

metabolic and organ damage (lactate, renal, liver measures). At the same time, there is no obvious 

analogue of 𝑍5  - probably, it is a sound absorber or some small effects that we certainly do not know 

about. 
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This alignment was not taught to the model explicitly with labels - it can be obtained out of the structure 

of causes and data. It gives an assurance that internal representations of the model have a medical 

meaning which is a sharp contrast to the conventional deep models in which latent features cannot be 

deciphered. The model is also capable of reasoning regarding the effect that an adverse event is going 

to have on each latent (e.g., the event of a septic shock will directly spike the values of 𝑍1  and 𝑍2). This 

is what we indeed found: in the case of septic events, the value of 𝑍1  and 𝑍2 aided using CFM rose by 

2.1 and 1.5 standard deviation on the average, respectively (p. 91-92). Critical path models lacking this 

structure did not have such an explicit infection neuron - they were forced to encode the complex pattern 

in a large number of weights, slowing and weakening adaptation. 

 

Figure 5: Latent Variable Correlation Heatmap is an illustration of the latent variables discovered 

through the Causal Foundation Model by displaying the internal direct associations between the latent 

state variables (x axis) and the y axis).  

The grayscale gradient is used to show the value of the pairwise correlation between zero values to one 

with darker shade of the gradient implying stronger statistical association. The latent dimension of the 

inflammatory burden is positively correlated with signs of sepsis severity by almost 0.83 and the latent 

dimension with the cardiopulmonary reserve indicates positive correlation with values of oxygenation 

and mean arterial pressure of nearly 0.78. These strong correlations provide support that the model does 

not form the information on the state of patients in non interpretable diffuse stores, but instead in 

physiologically coherent clusters. Statistical significance of such correlations do not change and p less 

than 0.001 is a confirmation of non random alignment. This suggests clinically that the model 

intrinsically decomposes and identifies central physiological subsystems like infection progression 

cardiovascular compromise and respiratory decline that contributes to more accurate and causal 

prediction in the negative conditions. Hence the figure shows that the Causal Foundation Model induced 

latent space is meaningful and pathophysiological in nature with higher understandability and 

robustness to interpret. 

(b) Attention and Feature Importance: We looked at the attention distributions of the model to examine 

the manner in which the model changes focus in the event of an adverse event. Normal sequences, CFM 

had to spread attention on multiple items (vitals, labs) that were suitable to the task. When an adverse 

event happened (e.g. the time of embolism), we have observed the spike of attention on some features 

- in the case of a PE, the model has focused a lot on oxygen saturation and blood pressure during the 

hours of the adverse event and less on other irrelevant features (e.g. blood glucose). This re-weighting 

is a sign that the model was aware that there was a difference and focused on those variables that were 

impacted causally. The traditional models, such as LSTM, lack an explicit attention mechanism, but we 

can compute the importance using input gradients; those had more of the pattern of emphasizing 

whatever features were globally predictive (as in general after an event the LSTM did not correct to the 

new state). 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 39-60 

53 

We also measured the Improvement in Importance of feature - the difference between the pre- and post-

event ranking of feature of any given model. CFM had high shift to correct features (rank of O2 

saturation changed 5 th to 1 st importance after PE, etc.) than LSTMs implicit ranking shifted, which 

changed less suitably. This adaptability in the attention of CFM presumably has its origins in its causal 

training: it is aware of which variables are a direct child of an event in the causal graph (e.g. E to O 2 

sat). Therefore, when already E, the signals of such children are of vital importance and the model 

makes the proper accent on them. This is the way through which the realization of the sense of causality 

results in adaptive concentration. 

 

Figure 6: Feature Importance Shift Before and After Adverse Event shows the alteration in relative 

contribution of the physiological variables in model decision making whereby the x axis is the clinical 

features, oxygensaturation mean arterial pressure heart rate, and serum lactate and the y axis is the 

normalized weight of importance on a 0-1 scale. Before the negative event, the model allocates its 

attention reasonably in all the features with an average of features with mean importance values between 

0.20 and 0.30. Importance of oxygen saturation and mean arterial pressure increase significantly after 

the onset of the event to about 0.35 and 0.45 respectively whilst the importance of heart rate and lactate 

reduces to less than 0.15 and 0.10 respectively. This is statistically significant with paired T- test 

producing p below 0.01 which means that nonrandom red redirecting model focus is taking place. The 

medical significance of this change indicates awareness of initial physiological limits of failure of the 

body in the early condition of shock in which oxygenation failure and hemodynamic instability are the 

first and most crucial signals. Hence the figure shows that the Causal Foundation Model dynamically 

optimizes its inference priorities in line with actual pathophysiological drivers that increase the 

interpretability and practical early diagnosis. 

(c) Model Explainers: Lastly, we tested the ability of the model to explain the predictions of the model 

using the language interface. The prompt that we made the patient was: the condition of the patient was 

worsening. What were the contributing factors to the increase of the risk score? in instances when a 

negative occurrence has been experienced. On a case example of a septic shock, CFM replied with the 

following sentence: I noticed an increase in lactate and decrease in blood pressure at the 12-hour mark, 

signaling of a septic shock. These were accompanied with a decrease in the supply of oxygen to the 

organs, consequently raising the risk of predicted organ failure. This description is quite consistent with 

clinical reasoning and the actions that we know the model latents were taking. It found that lactate 

(which is actually high and followed by Z4) and BP (followed by Z2) are drivers - which is consistent 

with latent factors and attention results. Foundational-only model was at least an instance where 

ethnographic explanations were sometimes generated but were more generic (e.g. "Patient is very sick 

which increases risk" without identifying particular causes). It is evident that the causal graph model 

does not include such a facility. This is an exciting result, even though it is not flawless, and the clarity 

of the explanations provided by CFM brings an optimistic idea that such big models can express their 

arguments, when directed correctly. This enhances the credibility: clinicians will have a better reason to 

believe a model that can provide them with reasons as to why it is raising a red flag on an unfavorable 
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occurrence, particularly when it does so by making use of clinical concepts that they get. Further 

explanations were cross-checked with real data to guarantee that we had no hallucinations. In 

identification of correct trend changes they were accurate in about 80 percent of cases. In the model, 

one of the factors that were mentioned did not actually occur (minor hallucination) and in the other 5 

percent were off-target. This is good beginning though this would require more refinements to become 

bullet proof in terms of explanation - which would be an important step in the deployment. 

4. Discussion 

In various ways, our findings are similar and consistent with existing research. To begin with, better 

forecasting performance of our LLM-based model is substantiated by recent findings of Makarov et al., 

where a better performance on the same tasks was demonstrated by an LLM (DT-GPT) by 1-3%, 

compared to the conventional models. A variety of baselines equally confirmed the power of foundation 

models in healthcare forecasting with our CFM performing better than the rest (Table 1). Notably, we 

addressed a dimension which DT-GPT did not, i.e. longitudinal resilience. DT-GPT was not directly 

experimented in cases of distribution shifts; our experiment introduces such critical analysis. It is 

noteworthy that some previous studies gave the idea that even with interpretability and small data, some 

of the problems could be resolved by causal ML, although this is commonly limited to simulation. We 

extended that by bringing the causal ML to a large scale realistic scenario which fundamentally closed 

the simulation-to-real gap. 

Theoretical expectations are empirically supported by our result showing that modeling causal structure 

is beneficial to out-of-distribution robustness. The identified weakness of the channel-independent 

(univariate) models in correlated clinical time-series has been observed previously - we directly address 

it by operating in a joint manner on all the variables and coding their causative relationships, and thus 

the better treatment of e.g. multi-organ effects in shock. Also, such high resilience of CFM is 

substantially consistent with the principle of autonomy of digital twins: the really autonomous digital 

twin must be able to confront unexpected conditions gracefully. Our twinned CFM comes as close to 

this ideal by incorporating a flexible AI. 

 

Figure 7: Average Causal Effect Prediction Comparison represents the ratio of the effect that the adverse 

event has on the severity of clinical outcome in which x-axis is a measure of assessed models and the 

y-axis is a measure of the predicted magnitude of the causal effect on organ failure severity. The actual 

causal impact of digital twin counterfactual simulation is about twenty points that forms the reference 

line in the figure. Causal Foundation Model forecasts an effect size of 18.5 that is pretty close to the 

actual truth when compared to Foundation only model that predicts an almost equal effect size of 15 

and LSTM that has 10 progressively underestimates its effect. The difference between the projected and 

actual effect is much smaller with a relatively deviation of less than eight percent that the comparison 

done by statistic proves that the Causal Foundation Model is highly fidel to causation by making the 

value of p less than 0.001. Clinically it implies that the Causal Foundation Model does not only become 

aware that deterioration occurs but also is able to precisely approximate how much it occurs which is 
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vital in decision making of urgency to take an intervention and the level at which to intervene. Thus the 

figure illustrates that the model offers a quantitative consistency of the model with real physiological 

effect in comparison with regular sequence models. 

Ablation Analysis We did ablation experiments to identify the contribution of each element: - Removal 

of the causal regularizer (𝜆 = 0) reduced RI by around 5-8 points each way effects by foundation-only 

vs our full model (Table 2). - eliminating digital twin augmented training (i.e. training only on real data 

without simulated events) dropped RI by some 3-5 points - better than LSTM, but it is agreeable that 

itself the foundation model is at least partially robust. - A smaller foundation model (340 million 

parameters, rather than 1.3B) induced some minor decrease in normal accuracy, and a bigger decrease 

in resilience (RI falls by an average of 2 points), which implies that model capacity affects accuracy 

and resistance. 

Error Analysis: Where CFM was also weak, we detected two major categories which were (1) when the 

effects of an adverse event were very faint or had happened very late (just before outcome), the CFM 

occasionally under-predicted their impact, which is really a recall problem in which the CFM 

overlooked a mild event. (2) The model performed worse in situations where there were several 

simultaneous adverse events happening (i.e. a patient already in septic shock, and was also diagnosed 

with PE), where the model performance dropped by up to 20 percent (MAE). The framework that we 

have today supports a single major event, and compounding events should be supported by extensions. 

These difficult cases outline the possibilities of future work, including multi-event simulations along 

with more expressive causal structures (e.g. dynamic Bayesian networks which can simulate compound 

events). 

Resistance to Data Problems: We also checked the resistance to the missing data and noise that are not 

related to the defined adverse events. Our experiments, by randomly removing 10 per cent of 

measurements, made it clear that the performance of CFM did not change (there was an increase in 

MAE of +1 per cent) when compared to LSTM whose MAE grew by about 4 per cent. This is in line 

with the statement that foundation models are more capable of managing missingness because of their 

pre-training and potentially the cause-effect causal prior that can predict missing causes based on their 

effect. On the outliers (we injected occasional out of range values), CFM was less susceptible again, 

probably due to the latent smoothing and effect of implausible values that CFM performs by using prior 

𝑝(𝑧) 0. 

Generality: Although our experiments were specifically on ICU with a horizon of 48h, the method is 

general. The CFM concept may be generalized to other spheres (e.g. chronic disease management using 

digital twins of patients over months) or even to other industries (industry IoT systems in which digital 

twins and foundation models may be used to monitor equipment). The possibility to simulate 

experiments on a twin and have an artificial intelligence that perceives causality is widely applicable. 

As an example, in pharmacovigilance, a digital twin of population health and a foundation model can 

be used to predict adverse drug events - a concept that is consistent with applying that same concept to 

adverse event mitigation. The results obtained by us provide a fragment to that puzzle since they 

demonstrate how the AI component can be resilientized. 

Summing up the discussion, it is possible to note that our solution has significant strengths in strength 

and accountability. Causal representation training turns out to be a powerful foundation model when 

applied into a simulated digital twin any high-level state of AI depends on, and it is the quality of 

reliability that we seek in next-generation AI in health. These findings propose further integration of 

data and knowledge based methods to make AI systems not just effective under ideal conditions but 

also sustain their effectiveness where it is required most - in the event of the unplanned. 

5. Conclusion 

This paper created a new theoretical framework and experimental research on the topic of algorithmic 

resilience in healthcare AI based on fusion of causal learning, foundation models, and digital twins 

simulations. We created our own Causal-Foundation Model (CFM) to maintain performance during 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 39-60 

56 

negative events with the process of learning representations of consistent causal patterns in the body of 

the patient. In the Introduction, we summarized the motivation and identified gaps in the current 

literature: the conventional models tend to fail during distributional changes, and the previous progress 

in foundation models and digital twins could not resolve the issue of robustness yet in its entirety. We 

intended causal relationships to be explicitly coded, and the model subjected to simulated crises would 

adjust each time there is an unexpected shift in reality could thus produce an eventual AI system. 

The findings depict that such an approach is extremely effective. Unchallenged predictive accuracy in 

normal conditions and much better performance compared to baseline models had been demonstrated 

by our CFM when faced with simulated adverse events (septic shock or equipment failure). On a 

quantitative measure, CFM maintained its maximum prediction with stress greater than 90 percent, as 

opposed to traditional LSTMs which maintained between 77 and 85 percent which was a significant 

resilience increase. It also issued previous warnings on clinical deteriorations, which is close to ground-

truth causation of events on patient outcomes. These were statistically significant improvements and the 

same across the various forms of events. We also demonstrated that the latent space of the model was 

consistent with meaningful medical concepts (infection level, organ function, etc.), as well as the model 

was able to provide human-understandable explanations of its predictions through the internal chatbot 

interface. This form of transparency is not common in high-capacity models, and it is explained by the 

fact that we have inculcated the causal structure as well as the communicative nature of foundation 

models. 

These results have a significant implication to the establishing of safe AI in the healthcare and other 

safety-related fields. To begin with, they offer a proof-of-concept that the ability to ensure robustness 

to unforeseen events can be designed into AI models through the interplay of knowledge-based 

constraints (causal relations) with the scale data-driven learning. It is one of the steps to reliable AI that 

can be relied on even during a crisis - a well-known demand of the tools that can be relevant to patient 

safety. Second, the way in which we train the AI on digital twins implies that we have created a general 

paradigm of stress-testing the algorithms in the system before they can be applied. As physical systems 

are known to be tested in simulators at extreme conditions, this is what we recommend our clinical AI 

be tested in silico at so-called virtual adverse events to understand the failure modes and design them 

better. This may soon be the endgame of AI development especially as more lifelike models of patients 

emerge. Third, the demonstrations of the effectiveness of foundation models in this case only reinforce 

the utility of such models in medicine, with a caveat that even large models are brittle in the absence of 

causal grounding, as demonstrated by our results. Thus, it is essential to invest in such methodologies 

as CRL and combine domain knowledge to achieve the maximum potential of foundation models in 

healthcare. It is not only the larger models or more data, but also extra clever training that is mindful of 

the underlying science of the problem. 

There are some weaknesses that we accept in our study. The real-world simulations represented by the 

digital twins, although being based on physiology, are given as simplifications of the reality. The actual 

negative instances are more complicated and multidimensional in nature than our shock simulation. 

This has the possibility of having unmodeled confounding or even compound event that our model has 

not experienced. Therefore, real clinical implementation would involve a delicate validation, perhaps 

by prospective simulation or controlled trials. Moreover, we evaluated short-term outcomes in the ICU; 

further studies are required to generalize the results to other activities (e.g. the progression of chronic 

diseases in the long-term). Our foundation model is large, but it is not necessarily the biggest one - tens 

of billions of parameters are emerging in medical LLPs. Even bigger models could be used to enhance 

performance, at the expense of computational resources. Nor did we especially explore negative effects 

of causal constraints - we may have too dramatic causal priors, which also may be disastrous in the 

event that one fishes out the wrong causal graph. We reduced this by a small regularization term and 

acquired most of this via data although care is needed on how much one pushes a model to prior 

knowledge as opposed to letting it learn. Lastly, ethical-wise, digital twins and AI create concerns of 

privacy of information, safety, and transparency. It enhances transparency (with explanations) and might 

enhance safety, although the data applied has to be carefully considered and models ought to be 
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confirmed to prevent undesirable biases (e.g. when using biased training data the foundation model 

learnt the biases of the training data). 

The present study creates numerous interesting opportunities. Testing in the Real World: The second 

step would be to work with medical facilities and investigate CFM in prospective studies. As an 

example, its implementation in an ICU as a virtual resident to constantly track the data about patients 

and notify in case of an adverse condition occurring or likely to occur. These trials have the ability to 

not only determine the predictive accuracy but also clinical utility (e.g. is intervention based on the 

model useful?). - personalization and Transfer Learning personalized Foundation models can be used 

on particular hospitals or patient populations. Our model could be used during federated learning to 

transform local data into a new model, without concentrating on the sensitive data of patients. General 

adoption will be significant to make sure the resilience over institutions (that may have varying data 

distributions) is ensured. - Multiple and Complex Events: With the digital twin simulation, further 

matching or scaling adverse events is possible as initiating several or sequential events (e.g. a patient 

develops one complication followed by another) will add to the simulation realism. This is probably 

necessitated by more complicated causal graphs and potentially dynamic causal models. The latent 

space where we are now is fixed point-wise with respect to sequence, a causal state at time can be time-

dependent in a future model. - Automated Causal Discovery: domain knowledge was partially used to 

design causal relations in our approach. Applying the interpretability tools intertwained with the model 

themselves to find causal structures in data is also of interest. Causal discovery research has been done, 

which could be incorporated in the form of the model that could refine its causal graph as it was training. 

This would come in handy in cases where professional knowledge is lacking. - Beyond Healthcare: We 

will find the use of the same strategy in other fields that need resilience. An autonomous vehicle is one 

such application: a digital twin of a vehicle might be able to simulate uncommon dangerous situations 

(ice on road, sensor malfunction) and a causal-aware foundation model may be trained to cope with 

such situations. The other I could use is critical infrastructure management where digitally twinned 

power grids along with AI could potentially predict and block failures or cyber-attacks. Regulatory 

Approval Pathways: To implement these models in healthcare, regulators are going to inspect their 

behavior at edge cases. The evaluations standards that may be needed by regulators such as the resilience 

metrics that we employed can be defined by our work. We will liaise with regulatory science scientists 

to institutionalize the testing of AI in unfavorable conditions, which may lead to advice on AI resilience 

in medical area apps. 

This paper has shown the innovative combination of the latest AI methods to address a key issue of the 

resilience in healthcare. Through demonstrating that a causally-informed foundation model can be 

trained and experimented using digital twin simulations into a highly resilient model, we present a 

theoretical model and a current example of future AI systems. We see a time when clinical AI is no 

longer a fragile device which needs to be re-trained every time the conditions change, but a steady 

collaborator, capable of managing any unexpected situation, just as an experienced clinician. This will 

need further interdisciplinary activities, combining machine learning, medical expertise, and system 

simulation - our work is a step in that direction, and we believe that it will be stimulated leading to more 

research results that will actualize fully resilient AI. 
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