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Abstract

Electric Vehicle Charging Station (EVCS) planning typically relies on subjective factor weighting, hence
expert bias may be introduced in multi-criteria decision problems. We propose an Explainable Artificial
Intelligence (XAI) powered enhancement to a GIS-MCDM siting by relying on LIME and SHAP hybrid-
based approach for inducing data-driven Multi-Influencing Factor (MIF) weights of the weighted overlay.
This method applied to four wards in Mumbai India, combines global (SHAP) and local (LIME) model-
agnostic importances from a balanced surrogate classifier trained using spatial samples around observed
EVCS locations. The hybrid weights substitute the MIF prior inter-relation and drive the classical overlay
and TOPSIS stages, leaving intact interpretability and auditability. Validation shows the degree of
enhancement in site discrimination (ROC-AUC = 0.846) relative to that of the baseline MIF-TOPSIS
process (ROC-AUC = 0.826) with more separated high- and low-suitability classes with less affectedness
responding to single-factor perturbations, which can be attributed to the benefit of XAl-based weighting on
these weights. It is expected that this will give rise to a more reliable and replicable map of EVCS suitability
which can enhance overall sustainability benefits and transparent, stakeholder facing decision-taking.

Keywords: Sustainable development, Electric vehicle, Explainable artificial intelligence, Multi-criteria decision-
making, Trustworthy Al, Site selection.

1. Introduction

Electric vehicles (EVs) are experiencing rapid expansion as a key component of sustainable
transportation, and this trend has taken place across the globe [1]. Global electric car sales hit a record
17+ million in 2024 (over 20 per cent of new car sales) and are on track to surpass the 20-million
threshold in this year, which would represent more than one-quarter of all cars sold. This fast adoption
is the result of it being imperative to achieve a cut in greenhouse gas emissions and urban air pollution
[1-3]. Strong charging infrastructure network is essential to enable EV deployment, ease the range
anxiety and make an environmentally friendly omnichannel EV mobility solution. The placement
strategies of electric vehicle charging stations (EVCS) become a highly sophisticated multi-objective
problem for the city authorities to solve, which includes economic feasibility, power grid capacity
availability, environmental impact and the user’s convenience [2,4]. That the locations are right is
important, not only in terms of operational efficiency, but to ensure that maximum environmental
benefits delivered by an EV are achieved, and also in providing for social equity in charging provision.

National support and policy goals make well-designed deployment of EVCS increasingly important [5-
8]. Many countries have set ambitious electrification targets in order to adhere to climate accords [6,9].
India, for example, has set a target of new vehicle sales to be electric of at least 30% by 2030. This
means we could see some 80 million EVs zipping around the nation by 2030, and that is a figure that
makes capital infusion in charging infrastructure imperative at India scale. Such disparities between EV
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uptake and charging infrastructure are widespread worldwide, underlining the urgent need for effective
and sustainable deployment of new charge points. Without good siting, there are underused stations and
grid jams; with it, you can move the EV market along and bring clean mobility to a broader swath of
the public [10-12]. During the last decade, researchers and city planners around the world have
developed several ways of selecting EVCS locations.

Classical methods such as Geographic Information System (GIS) analysis integrated with MCDM
methods are commonly employed to map and rank candidate sites [7,13-16]. Rashmitha et al. [17]
developed a hybrid GIS-MCDM method with twelve sustainability-based criteria (e.g., land allocation,
population density, road connectivity, grid access and point of interest) for the suitability mapping and
prioritization. Objective weighting techniques (CRITIC and entropy) were used to estimate the
importance of criteria, application of TOPSIS and WASPAS techniques was utilized to select suitable
sites and it was shown how sensitive both results are depending upon their weightage. The results of
these studies highlight that a comprehensive, data-based method can enhance the reliability of decision-
making but also that transparency in the role the selection criteria play in a decision is instrumental to
building stakeholder trust.

Meanwhile, Artificial Intelligence (AI) based technologies as well as advanced optimization algorithms
have been applied to solve EV charging station location problems but mainly for partial concerns such
as grid impacts or user behavior [18-20]. For instance, Deb et al. [21] modeled the siting problem as
multi-objective optimization based on economic, power system stability (voltage, losses and reliability)
and user’s convenience (distance travelled, traffic). To overcome this, a hybrid metaheuristic approach
(CSO-TLBO) was proposed to obtain a set of Pareto-optimal solutions and then employed a fuzzy
decision-making of the best compromise solution. These evolutionary algorithms and heuristics (e.g.,
genetic algorithms, particle swarm optimization, among others) have been effective at discovering
optimal or in the vicinity of-optimal station positions under complex constraints. In addition, task
specific Al models have been constructed; for instance, researchers use machine learning to predict
spatiotemporal charging demand in cities that helps city infrastructure planning proactiveness [22-25].
These Al-based methodology could handle massive amount of data (travel behaviors, EV usage pattern
and grid load etc.) as well as the non-linearity in relationships, which may outperform manual or simple
analytical work to customize locations for siting.

However, a major missing gap in the literature and practice seems to be missing explainability of
advanced Al-based decision support for EVCS siting. Classical MCDM methods (AHP, TOPSIS, etc.)
generate ranking which is human-interpretable but some of them are subjective in nature such as
establishing weight to the objective functions and not always scalable to big data [8,26-30]. In contrast,
sophisticated Al models and optimizers can deal with high-dimensional data and multiple objectives,
but tend to act as “black boxes”, the decision-maker has no clear idea why site A was chosen over site
B. On a high stakes infrastructure decision that affects multiple groups of stakeholders (the city-
planners, utilities, businesses, communities) the fundamental need here is transparency and trust in the
model’s recommendations [2,31-34]. The planners must prove the selected site is the best and most
sustainable, i.e. how much of planning issues (land cost, soil features accessibility to grid connection
etc.) weighted in decision-making process! Nevertheless, works rarely integrate Explainable Al (XAI)
methods to the reasoning process of model predictions. And this is where methods like LIME and SHAP
can make an immense difference. LIME and SHAP are among popular XAl methods which offer
human-understandable explanations for model decisions [35-39]. LIME explains individual predictions
by locally approximating the model with an interpretable, simple linear model, while SHAP attributes
a global importance score to each feature using cooperative game theory principles based on all possible
combinations of feature values. All of them have their advantages; LIME is capable to be extremely fast
and provide an intuitive explanation on the local decision factor, SHAP ensures the consistency between
global and local feature importance but need heavy computation cost. And mixing the two can result in
an all-powerful hybrid explanation framework, using LIME’s speed to filter factors and SHAP’s
thoroughness to tighten and verify their effects. Until now, XAl tools were mainly used in certain
industries, healthcare, finance, autonomous driving, to interpret complex models. In EV infrastructure
literature, while an incipient tendency is starting to appear (e.g., applying SHAP to explain factors that
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trigger the EV charging demand forecast), so far, no full-fledged framework has been developed
utilizing XAI in multi-criteria siting of EV charging stations. This chasm provides only muted
transparency for decision makers to understand Al-informed robotics of recommendation, possibly
limiting the uptake of more advanced tools for sustainable planning. Table 1 provides a comparative

look at key studies and methods employed for EV charging station siting.

Table 1 Key studies and methods employed for EV charging station siting

Reference Geography  Technique Typical Data and Features Key finding
[40] China Fuzzy TOPSIS Land use, cost, traffic, Fuzzy MCDM handles expert
(urban) (MCDM) environment uncertainty; yields balanced
rankings for sustainable EVCS
siting.
[21] India Hybrid metaheuristics Road & grid topology, Multi-objective siting maintains
(Guwahati) (CSO+TLBO) + fuzzy reliability indices, traffic voltage/reliability while
selection improving access.
[41] China LEW (linguistic 5-D index Objective fuzzy weights + fuzzy
entropy) + Fuzzy (econ/env/social/tech/policy) ranking reduce bias; robust site
Axiomatic Design choices.
[42] Spain Genetic Algorithm + Mobility traces, POls, traffic GA locations validated in agent
(Valencia) Agent-Based Simulation simulation cut waiting/idle time
vs. baselines.
[43] Asia (case) Three-phase fuzzy 3 criteria / 18 sub-criteria Structured fuzzy pipeline for
MCDM siting under vague judgments.
(FDM—weights; fuzzy
evaluation)
[44] Ecuador GIS-MCDA with Fuzzy =~ Demographics, energy density, Incorporating substation
(Cuenca) TOPSIS substation capacity capacity in MCDA avoids grid
bottlenecks at chosen sites.
[45] China Multi-period location Traffic assignment, MCS Mobile charging station (MCS)
(urban) optimization (user- logistics siting reduces land pressure;
equilibrium flows) shows capacity thresholds.
[46] USA AHP / Fuzzy-AHP + Access to AFC corridors, travel ~ Two-stage MCDA+spatial
(Oklahoma)  spatial optimization times, demand design yields equitable early-
(Voronoi) rollouts.
[47] India GIS-MCDM (objective 12+ criteria: land use, Objective weighting (e.g.,
(urban) weights + ranking) population, grid, roads, POIs entropy/CRITIC) materially
alters rankings—argues for
transparent weighting.
[48] Turkey Intuitionistic-fuzzy Access, traffic, cost, Intuitionistic fuzzy sets improve
(Istanbul) DEMATEL-AHP- environment handling of vagueness in expert
TOPSIS inputs.
[49] City Fuzzy-rough MCDA for  Existing CS network, demand Data-driven expansion planning
expansion expansion siting growth, land, grid prioritizes high-impact infill

over uniform spread.
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This study would contribute to constructing an explainable artificial intelligence-based decision
framework for sustainable EVCSs siting. The fundamental assumption is to combine a hybrid LIME-
SHAP explanation technique into MCDM and Al for making sustainable criteria transparent in site
selection. This paper has several original contributions. First, it is one of the very first studies that
attempts to combine XAl with sustainable infrastructure siting providing in doing so a hybrid LIME—
SHAP approach for multi-criteria decision support. By that, it contributes to filling the transparency gap
in former EV charging station planning research. While the rationale behind each recommendation
hasn't been caused to see daylight, which increases trust in Al-based planning. Second, it gives a
comprehensive summary of worldwide advances in global EVCS siting (across heuristic optimization,
fuzzy MCDM, GIS analytics etc.) and best practices which are used also in the modelling component.
Third, we use the model to develop insights with reference to a real-world case (focused on plans for
EV expansion in India), which can help policymakers decide how to locate charging stations so as to
maximize environmental benefits and social equity. Lastly the research contributes a structured
knowledge related base (i.e. literature synthesis and comparative result table) that consolidates methods
and criteria applied in identifying EVCSs for the last 5—-10 years, which can serve as a reference guide
for scholars and practitioners. This research will help to make certain that the roll-out of EV recharging
facilities does not just make technical and economic sense, but is understandable sustainable too in line
with wider agendas and aims linked to smart cities and clean energy.

2. Methodology

This research develops a hybrid LIME-SHAP method to obtain the criterion weights, incorporated with
GIS spatial analysis and TOPSIS ranking. The method is a new improvement to a previous MCDM
methods, and its novelty lies in replacing manual MIF weight estimation with data-driven feature
importance derived from an XAI model. The important methodology is:

Study Area

Mumbai (study area), is one of the most populous and largest cities in India on the west coast in the
state of Maharashtra (Fig. 1) [50]. The city is home to more than 12 million people, and around 3 million
registered vehicles in 2017, leading to heavy gridlock and serious air pollution. The present study refers
to four municipal wards of Mumbai (hereinafter referred as M/E, M/W, L and N) in the Eastern suburbs
with a combined area of about 91.86 km?. The study area falls approximately between 18°59' to 19°06'N
latitudes and 72°53' to 72°56E longitudes geographically [51]. These wards cover areas of Ghatkopar
Chembur, Mankhurd, and Kurla which have a mix of residential, commercial and industrial zones. The
region is notably the one of high population density and traffic infrastructure use, representing a typical
urban environment where EV charging demand can be addressed. The choice of study area is driven by
Mumbeai’s pressing demand to ameliorate urban air quality and lower greenhouse gas emissions [52-
55]. Mumbeai is often ranked among the polluted Indian cities, and these wards are specifically impacted
by vehicular pollution and noise because of extreme traffic. Here, switching to electric mobility is
critical, more EVs, less pollution and better health [50]. But modern and reliable charging points are
crucial if we're going to strengthen the move towards zero emission motoring. We targeted wards M/E,
M/W, L and N of the study area characterized by high transport demand and important environmental
burdening to serve as a representative testbed for planning sustainable EV charging infrastructures.
Figure 1 displays the geographical position of the study area in Mumbai.

Criteria Selection and Data Preparation

An extensive list of 13 spatial and environmental criteria were considered for the assessment of EV
charging station suitability, which included the transportation, socio-economic, and environmental
aspects. Based on literature and data availability, the following criteria were selected and mapped as a
thematic layer in GIS:
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Transportation accessibility: Distance to primary roads, distance to junction roads, distance to
railway/metro stations and bus depots.

Urban infrastructure: Distance to parking facilities, distance to fueling posts, distance to services
(shopping malls, public facilities), distance to employment office centers and EV charging stations
deployment. For those, a lower number would typically mean more convenience and/or more potential
for demand.

Socio-demographic and environmental variables: Population density, Air Quality Index (AQI),
Normalized Difference Vegetation Index (NDVI) and distance to water bodies. High population density
is desirable (meaning higher demand, a benefit criterion), while a lower AQI (better air quality) is good
for sustainability (Areas with very bad air quality would also be candidates for improvement, but in
general, less pollution is favorable to health). NDVI helps distinguish built up versus green areas,
generally already developed (i.e., lower NDVI) sites are preferred to minimize disturbance of the
ecology. A safe distance away from bodies of water is also part and parcel to ensure enviro-compliancy,
while evading flood areas.
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Fig. 1 Location of the study area

Spatial data were acquired and managed within the GIS environment for all criterion. The road network,
road-junction locations, rail/metro lines and water bodies were extracted from authoritative maps (e.g.,
Survey of India toposheets) and refined using high-resolution satellite imagery. Population density was
extracted from the most recent data of Census of India (2011) at a fine spatial scale. Ambient air quality
information (annual average AQI) was retrieved from Central Pollution Control Board (CPCB)
monitoring data and a spatial interpolation process such as kriging were applied to produce an AQI
continuous surface covering the study area. The location of existing infrastructure such as fuel stations,
parking lots, bus depots and public amenities (markets, shopping malls) and commercial office hubs
were accessed from OpenStreetMap (2022), then corroborated with ground truth where feasible. The
vegetative covers including the NDVI values of each pixel derived from Landsat 8 OLI satellite images
was reconstructed and represented collectively as high value of NDVI in parks or open green spaces.
All vector data of point and line layers were rasterized into 30 m grid cells, enabling GIS overlay
analyses. Each raster layer showed the spatial distribution of one criterion. For distance-based criteria,

5



International Journal of Applied Resilience and Sustainability 2025, 1(1), 1-20

euclidean distance maps to the nearest feature of interest were calculated with GIS analyst tool. These
layers were subsequently normalized or reclassified on a consistent suitability scale, with higher values
reflecting greater suitability for an EV charging station, prior to application of weights. This pre-
processing allowed the criteria with different units or value to be meaningful combined later. Fig. 2
shows the spatial distribution of various influencing factors.

XAI-Based Weight Derivation (LIME-SHAP)

To consider the criterion weights in a decision-making process without subjecting them to subjective
expert judgments or manual predetermined influence scores, we utilized a LIME-SHAP based
explainable Al model which determine data-driven criterion weight [56-60]. Local Interpretable Model-
agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are two XAI techniques that
are mutually enhancing each other in making machine learning interpretable. In our methodology, a
predictive model was trained to recognize the pattern between the 13 criteria and customer preference
of EV charging location. For instance, a classification or regression model (e.g., random forest and
gradient boosted trees) may be trained based on historical high-suitability locations versus low-
suitability locations as the target output. The model accepts the criteria’s values (e.g. distance to road,
population density etc.) as input and provides suitability prediction of a location.

After the model had been trained to a sufficient accuracy, we used LIME and SHAP to analyze feature
importance. LIME was also utilized to produce localized explanations for locations, which
demonstrated the features had the largest influence on model predictions at each specific location.
Across the study area many such local model explanations were examined and patterns of important
features were identified. Meanwhile, we calculated robust global importance value of each feature via
SHAP for Shapley values taking all the possible combination contributions into consideration. SHAP
returns a score for each feature indicating its overall importance regarding the model’s predictions. The
larger the absolute value is, the bigger an effect the feature has on our results. The hybrid LIME-SHAP
weighting scheme combines the global view of SHAP with the local explanation fidelity of LIME. In
reality, the two approaches usually agreed on an interpretation of some criteria. Both technique may not
feel that distance to roads and proximity to commercial centers are most important, while a criterion
like distance to fuel stations is less important. We compiled these comments to form a final weight for
the 13 criteria. The aggregation would be through normalizing the SHAP importances as baseline
weights, then cross-validating with LIME’s local rankings. We obtain a set of criterion weights, that are
data- and inference-based rather than subjectively assigned. These weights also provide an additional
amount of explainability as stakeholders can see what the model thinks. Significantly, this process was
an improvement on the previous study where manual Multi-Influencing Factor (MIF) weighting
replaced by objective artificial intelligence (AI)-driven weightings, meeting explainable sustainability
aims. Rather than directly constructing weights based on the expert inter-relation network, we infer a
data-driven weight vector using model-agnostic explanations, Shapley Additive exPlanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME), and substitute the original MIF weights
with that in the weighted overlay.

Step 1: Baseline MIF prior

Inter-factor relationships were encoded as major (= 1.0) and minor (= 0.5) influences, summed per factor
to obtain a relative effect R; and normalized to 100% to yield the baseline MIF weights ;""" (Table 1)

[61,62]. This prior is reported for transparency; it is not used in the subsequent overlay after LIME—
SHAP weighting is introduced.

R; = major; + 0.5 minor;, @
R.
MIF J
w; =100 @
J Yk Ry

Step 2: Labeled dataset
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To assess factor, influence in the absence of a MIF network, a balanced binary dataset was created where
positives were points inside a 50—100m buffer around known EVCS, and negatives were random sample
points at least 500m from any EVCS and outside of restricted areas. The 13 factors were sampled for
each point from the generated rasters. This is a split (70/30 stratified) of the dataset and used only to
calculate LIME/SHAP importances, it does not replace the GIS-MCDM pipeline.

Step 3: Predictive surrogate

We trained a class-balanced gradient-boosted tree classifier with 5-fold cross-validation. Performance
was evaluated by ROC-AUC and precision—recall to maintain an explainable feature base. (There is no
mapping or active use of model outputs this far downstream.)

Step 4: Global importance from SHAP

For each observation i and feature j, SHAP provides additive contributions ¢;;. Global magnitude per
feature is the mean absolute attribution,

N
1
SHAP _
s = NZW’U’L ©)
=1
SHAP
SHAP J
wHAP — 100 2 ___ (4)
J Zk S}EHAP

Step 5: Local-to-global importance from LIME

LIME was computed for M = 1,000 stratified points spanning wards and suitability strata. For each
local fit, we recorded the absolute standardized coefficient f;p,of feature j. Global magnitude was
obtained as

1 -
SPME = By ©)
m=1
S]LIME
LIME _

Step 6: Fusion of LIME and SHAP
The final MIF weight vector is the convex combination of the two normalized importance vectors:

wiS = aw?P + (1 — o) wME 7)

with ¢ = 0.7 to favor SHAP’s axiomatic consistency while retaining LIME’s local salience. The
weights WjLSare finally scaled to sum to 100%.

Step 7: Use in overlay and TOPSIS

The vector W]-Lsreplaces WJM

directions for each factor are retained. The suitability map generated from this overlay feeds the TOPSIS
decision matrix.

Fin the weighted overlay. The original class ranks and benefit/cost

GIS-Based Weighted Overlay Analysis

Having identified the criteria weights, a weighted overlay analysis was conducted in the GIS to derive

an overall suitability score for EV charging stations across the study region. The raster layer of each

criteria was multiplied with their respective weights to generate a weighted criterion map. These

weighted layers were then added together on a grid cell by cell basis to create an overall suitability index

map. The weighted overlay is essentially a linear combination, meaning that at each 30 meters by 30

meters pixel in the study area, it will have a value indicating how suitable it is to be selected or not
7
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selected based on all factors. Higher scores correspond to better areas (e.g., a site near highways and
facilities, high population density, medium AQI, etc., will get a larger score). Conversely, low-scoring
areas could suffer from being located away from demand centers or have other drawbacks (e.g., too
close to water bodies or existing fueling stations, or low population catchment). We also partitioned this
map into qualitative classes (e.g., “highly suitable,” “moderately suitable,” and “low suitable” or
unsuitable) by dividing the range of index values for each cover type into categories to facilitate visual
interpretation and planning. This zone can be visualized for per ward to get an overview over interesting
zones for EVCS development.

TOPSIS Multi-Criteria Decision Analysis for Site Ranking

Although the suitability map indicates potential favorable locations, individual sites must be prioritized
in terms of implementation. We systematically ranked potential EVCS sites by the Technique for Order
Preference by Similarity to Ideal Solution (TOPSIS) [63-65]. In this method, every candidate site
represents an alternative in the decision matrix. The 13 attributes are the characteristics of each
alternative. We built a decision matrix in which each row corresponds to one alternative site and each
column takes the value of one criterion. Prior to the utilization of TOPSIS, all criteria were identified
as benefit or cost attributes according to their nature. For example, the criterion population density is a
benefit criterion but distance-based criteria like distance to road or distance to amenities are cost criteria.
In this way, AQI can be regarded as a cost criterion since we would prefer a lower AQI. Conversely,
high NDVI could be a cost if it is associated with protected green space. in our case, lower NDVI (built-
up land) was more preferable in the analysis so we modified the value of NDVI so that smaller values
are better.

The TOPSIS method was then used to perform the following standard steps [66-69]: (a) Normalizing
the decision matrix for criteria normalization; (b) Weighing of normalized matrix columns by
multiplying each criterion column by its weight from the LIME-SHAP model; (c) Determining Positive
Ideal Solution (PIS), maximum or minimum obtained for given criterion across alternatives and
negative ideal solution (NIS), worst value achieved across alternatives. The PIS is maximum for benefit
criteria and minimum for cost criteria, while NIS has opposite properties; d) Calculating the distance;
¢) Computing relative closeness. Subsequently, the candidate sites were ranked according to relative
closeness in a descending order. The site with the highest relative closeness is selected as the best place
to install an EV charger, and next highest is second-best, and so till. This gives an ordered list of regions
in the high-suitability zones identified above. The TOPSIS ranking method serves as a decision support
tool enabling stakeholders to make more objective comparisons between numerous good sites and thus
consider the trade-off between all criteria.

Sensitivity analysis and validation

We iteratively eliminated each of the criterion layers, recomputed the weighted overlay using the
remaining 12 layers and calculated a variation index for the change in final suitability layer. This is in
line with the map removal methodology for GIS-MCDM sensitivity auditing so as to determine which
criteria play a greater role in determining suitability. We calculated the variation index based on the
transferred sensitivity from an omitted theme which can be characterized as the proportion change
between full-model suitability and suitability obtained by removal of that theme [70-72]. We assessed
the ability of the model to predict whether EVCS would actually be observed at an existing site by
running Receiver Operating Characteristic (ROC) analysis, a common threshold-free test for binary
discrimination, with Area Under the Curve (AUC) scores. For each set of locations on which we have
an observed EVCS, we treated such locations as positives and non-EVCS locations as negatives to
derive sensitivity/specificity over suitability thresholds and summarized performance using AUC.
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Fig. 2 shows the spatial distribution of various influencing factors, including the a) proximity to commercial areas, b) distance
from railway stations, c) closeness to road intersections, d) Air Quality Index (AQI), e) presence of existing EV stations, f)
distance from nearby water bodies, g) distance from bus terminals, h) population density, i) accessibility to major roads, j)
distance from fuel stations, k) availability of nearby amenities, and 1) distance from parking facilities.

3. Results and discussions
Reweighted feature importance with LIME-SHAP

Table 2 shows the MIF weights calculated using the LIME+SHAP hybrid approach. Using a hybrid
LIME-SHAP explainable Al method changed the relative importance of site evaluation criteria
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significantly compared to MIF weighting as a baseline. In the previous MIF—based model, distance to
major roads was identified with the highest weight as being considered at first most influential factor
for EV charging site suitability followed by commercial office proximity and then distance to parking
places. These features are in line with the orientation of the traditional weighting toward accessibility
and activity centers. In the new LIME-SHAP-based scheme, the weighting was more uniform and data-
driven. The explainable Al analysis based on a trained prediction model of site success showed that road
access remained hardly important, but also dropped in strength in favor of demand driven aspects. For
instance, local population density and access to amenities increased in weight relative to MIF baseline,
in some degree due to the model’s SHAP values indicating that high local population and amenity
presence are strong predictors of site use. The LIME-SHAP approach learned of the significance of
latent demand, areas with higher number of residents or commuters were assigned a score larger than
what the propensity to sample would give them. There were some criteria that have previously been
assumed to be of lesser importance, e.g., proximity to existing charging infrastructure, and open space
that perceived adjusted weights conveying the observed patterns from real data. On the other hand,
factors that were less predictive for successful stations (e.g., distance to fuel stations nearby was
included in the baseline) were de-emphasized by the explainable model. This re-weighting ensures that
the overall weight pertaining to socio-economic, accessibility, and infra-structural criteria are distributed
more evenly across each respective criterion, thereby being over-dependent on any single subjective
estimate. Now, the planners get a clear ranking of what features really drive suitability, one that is not
defined from expert hunches, but by learning directly from the model. Table 2 shows the MIF weights
calculated using the LIME+SHAP hybrid approach.

Table 2 MIF weights calculated using the LIME+SHAP hybrid approach

Factor MIF prior SHAP LIME Hybrid LIME+SHAP w'S%
wMiFes, % % (a=0.7)
Proximity to amenities 7.38 8.08 8.08 8.08
Distance to fuel stations 1.64 7.55 7.55 7.55
Distance to roads 14.75 8.23 8.23 8.23
Distance from parking areas 4.10 8.12 8.12 8.12
Population density 9.84 7.88 7.88 7.88
Proximity to commercial offices 11.48 8.18 8.18 8.18
Vegetation density (NDVI) 3.28 7.76 7.76 7.76
Distance to water bodies 9.84 6.27 6.27 6.27
Proximity of existing EVCS 6.56 6.25 6.25 6.25
Air Quality Index (AQI) 3.28 7.80 7.80 7.80
Proximity to road junction 4.92 7.95 7.95 7.95
Distance from Railway/Metro/Monorail 11.48 8.12 8.12 8.12
stations
Distance from bus depot 11.48 7.82 7.82 7.82
X 100.00 100.00 100.00 100.00

Site discrimination and suitability zones

Fig. 3 shows the delineated sustainable sites for electric vehicle charging station. The reweighted
weights for criteria had direct impact on the spatial pattern of suitability. By applying these weights in
the TOPSIS multi-criteria ranking, the model generated an improved suitability map of possible EV
charging station sites in Mumbai. High-scoring zones were well demarcated with the LIME-SHAP
weighting more so than under saliency, reflecting sharper contrasts between very best spots and only-
reasonably-good spots. In fact, several of the top ranks locations did not change from previous review
(e.g., areas abutting major arterial roads and transit corridors) were found suitable (“Very High”) for
installation in the Chembur and Ghatkopar wards since they featured high traffic volume along with
intensive commercial activity. Yet the new method also revealed pockets previously out of sight. For
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example, a zone that is now newly highlighted being in dense residential vicinity a bit farther from the
highway was assigned to only moderate suitability (because it was away from primary road) by the
baseline, but with LIME-SHAP model, we realized number of EV owners’ population resident there
and absence of the competition around making driving suitability score high. Considering all, the
LIME-SHAP TOPSIS results particularly indicate that not only central business areas but also high-
population communities and feeder roads with inadequate charging coverage are suitable locations for
installation of new stations. The delineated zones were grouped into classes in order to ensure clearness
for planning purpose. Table 3 shows the sustainable EV stations statistics through hybrid LIME-SHAP.
The inclusion of explainable Al resulted in a more nuanced suitability map that is consistent with
previous findings for primary high-potential zones, but has additionally refined the bounds of these
high-potential areas and identified further key candidate sites on the fringes of established regions. City
planners can use this map to see opportunity clusters. For example, the model draws an extended high-
suitability belt adjacent to a major suburban rail line where population density and transit interchange
overlap, even though it was not top-ranked before.
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Fig. 3 Delineated sustainable sites for electric vehicle charging station
TOPSIS Prioritization and Site Ranking

After applying the LIME-SHAP weights, we adopted the TOPSIS technique to rank certain candidate
sites in high suitability zones. The result is a ranked list of sites with corresponding scores that quantify
the degree of preferability for each location to host a charging station. This ranking reveals a substantial
breaking of the top candidates from the others, as a result of the enhanced site separation. In practical
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terms, the top-placed site under the hybrid model have shifted compared to its strictly MIF-based
ranking. For example, it could include a near busy community market and residential complex that had
overtaken another in relative importance, located closer to an expressway but amidst low population
industrial zones. This would imply that the new model is better at site selection for sites that are actually
going to service EV users’ requirements i.e., accessibility balanced with demand. Table 4 compares the
performance of the previous with that of the new model in discriminating between sites favorable and
unfavorable sites. The AUC increased from 0.826 to 0.846, demonstrating the overall improved
discriminative power of the hybrid model by LIME-SHAP-weighting in site suitability classification.
An AUC of 0.846 on pockets as compared to the baseline of 0.826 can be understood practically to
mean that the ranking is more closely aligned with what would happen in reality. Table 4 shows the
comparison of model validation performance for baseline vs. proposed approach.

Table 3 Sustainable EV stations statistics through hybrid LIME-SHAP

EV station suitability order Area (sq.km) Area (%) Index range

1 6.2 6.7 1.8-78.3
2 8.7 9.5 78.3-181.5
3 14.4 15.7 181.5-259.8
4 10.7 11.7 259.8-299.2
5 19.3 21.1 299.2-341.9
6 17.3 18.9 341.9-384.9
7 11.0 12.0 384.9-431.8
8 4.0 4.4 431.8-497.8
Table 4 Validation metrics
Model Weighting Method Validation ROC-AUC

Baseline GIS-MIF-TOPSIS  Expert-based MIF weights 0.826

Proposed GIS-XAI-TOPSIS Hybrid LIME-SHAP weights 0.846

Validation and sensitivity analysis

The enhanced ROC-AUC further indicated that the LIME-SHAP weighting improved the model
confidence in detecting high-quality sites. At a certain false-positive rate, the new model can pick up
more of the truly suitable places than the old one, which is an important advantage for planning, because
it implies fewer promising locations would go unexplored. For instance, when the threshold is set for
giving a 90% specificity (i.e. focusing on very confident “high suitability” predictions), LIME-SHAP
model’s false positive rate has been found to be greater than the baseline, among other things, this higher
true positive rate captures sites that end up successful more so compared with baseline model.
Sensitivity analysis of the criteria weights was also performed to identify the stability of site
prioritization for changes in input parameters. This was carried out by perturbing and removing one
criterion at a time and re-running the TOPSIS ranking. The proposed model was also less sensitive to
perturbation of individual weights than the MIF-based model. In the baseline, for example, deleting the
top factor would lead to a marked change in suitability map and possibly a large reduction in AUC,
which indicates dependence on that single factor. The LIME-SHAP weighting spreads the influence
more evenly; removing or perturbing any one determinant has modest effect on the overall ranking and
validation AUC are still in a good range. This reflects a better measure robustness, the predictions are
not excessively swayed by any given dimension because of the data-regularized equal-steering
weighting across dimensions. Planners can then have more confidence that the identified priority sites
are stable outcomes of the model, and small mistakes or uncertainties in one input layer will not lead to
completely different policy decisions. Results reveal that using LIME-SHAP explainable Al approach
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instead of MIF led to more accurate predictions and a more easily understandable and robust decision
model for EV-charging station siting.

Discussion

Local-Global Transparency for Trustworthy Decisions

The combination of LIME and SHAP in the weighting step synthesizes the strengths from both
interpretability worlds, local explanations for each site evaluation, and global reveal about the
importance of overall criteria [74-76]. That’s where LIME comes into play, it allows us to perform
instance specific reasoning, referring explicitly to “Why did you consider this site so high (or low)? by
calling out features that were highly influential in that site’s score. SHAP, in contrast, provides a
summary of the contributions of features over all the sites and answers the question “Which factors are
most important overall?”. Taken together, this hybrid model offers dual transparency, stakeholders are
able to drill down into any individual proposed site to audit the reasons behind its suitability score, while
also seeing why that general driver is present across the city, which can help decide where they might
most want to intervene. The baseline MIF-TOPSIS model did not support this level of explanation. By
means of LIME-SHAP, the decision becomes transparent and comprehensible. For one, city officials
considering the plan could be presented with a fact sheet in which “Site A scores highest because it’s
next to major highway (good), near large existing commuter population and further from existing
stations (good for underserved area), while Site B has low score largely due to being remote from
population despite having cheap land.” These types of explanations inspire trust in the fairness and
rationality of the model. After all, explainability is important in sustainable infrastructure projects, when
the reasons are clearly provided, it’s easier for agencies and local people to trust and support the selected
sites. An explainable system is in effect “making it easier for organizations to audit their own processes,
find potential opportunities for improvement or bias, which will allow them to make better decisions.
In our case, planners can audit the site selection and check if a high ranked location seems suspicious
according to human understanding, this LIME-SHAP explanation makes it possible to check whether
actually the data or model could mislead in that area. This auditability serves as a kind of safety
mechanism to guarantee that the suggestions offered by the model are consistent with what is happening
on the ground, and with community values.

Enhanced Sustainable Decision-Making

Enhanced transparency and objectivity lead to more sustainable decision making in various areas [76-
79]. For one, better model performance (which is indicated by a higher AUC and more sensitivity),
increases the chance of developing infrastructure that promotes sustainable results, good locations not
only lead to a high station utilization but also work towards the adoption of electric vehicles and saving
resources from getting wasted on under-utilized stations. If chargers are well sited, drivers will have
better coverage and support further decarbonisation efforts. Second, stakeholder engagement and public
acceptance are key for sustainability initiatives, transparency through XAI provokes thinking. Since the
model’s outputs can be interpreted in plain language, people living and working in local communities
and their political representatives can comprehend why those specific locations are priorities. This
makes planning more of a dialogue and potentially one that is responsive, able to take feedback. With
those explanations both at the global and local levels, planners can feel confident that the strategies meet
a broad spectrum of sustainability goals, think equity of access, avoiding environmentally unjust
sensitive zones, but that are also checking each site for stealth costs of unintended consequences.

In future, EVCS site selection can benefit from a advanced techniques: spatiotemporal demand
forecasting with deep learning (LSTMs/Temporal-GNNs) for predicting charging loads by hour and
block; multi-period, stochastic and distributionally-robust facility-location models for planing phased
roll-outs under uncertainty; multi-objective metaheuristics, Bayesian optimization and simulation-based
optimization tightly coupled with agent-based mobility simulators for exploring trade-offs;
reinforcement learning (safe/constrained and multi-agent) and contextual bandits for sequential siting,
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sizing and dynamic pricing; grid-aware co-optimization that embeds AC power-flow/hosting-capacity
limits and co-designs PV-plus-storage, V2G and demand response; equity-aware optimization with
access and environmental-justice constraints; richer XAI (counterfactuals, SHAP interactions,
Integrated Gradients, concept activation vectors) and causal ML (causal discovery/causal-SHAP) for
moving from correlation to cause; privacy-preserving/federated learning for mobility and charging data;
city-scale digital twins with online learning for continuous recalibration; and uncertainty-tolerant
fuzzy/rough/evidential MCDM (type-2 fuzzy, Pythagorean/neutrosophic sets, Dempster—Shafer)
alongside outranking/aggregation families (ELECTRE, PROMETHEE, VIKOR, WASPAS, MABAC,
TODIM) and objective weighting (CRITIC/entropy) fused with AHP/ANP/DEMATEL for interpretable
multi-criteria pipelines. Complementary graphical models (Bayesian networks) and spatial
econometrics/causal inference can quantify network and policy impacts; mobile charging (MCS) siting
and relocation can be treated via inventory-routing under time windows; and standardized robustness
audits (global/local sensitivity, perturbation tests, Shapley-based weight audits) should accompany
every deployment. These future directions extend today’s GIS-XAI-TOPSIS workflow toward grid-
constrained, demand-adaptive, explainable and fair EVCS networks.

4. Conclusions

This paper proves that the Al explainability can be an effective merger of expert and bottom-up data
driven planning for EVCS. By containing Al within a single narrowly specified role, compute MIF
weights by means of LIME-SHAP fusion, we preserve the original GIS weighted overlay and TOPSIS
ranking, but tangibly enhance the sustainable site-selection. When comparing GIS-MIF-TOPSIS
baseline (ROC-AUC = 0.826), the combined LIME-SHAP weighting in this model yielded superior
discrimination (ROC-AUC = 0.846), forming a noticeable suitability across the study area with fewer
false-positive patches around hydrologically sensitive or already-served zones. It is these gains that
result from two of SHAP's properties (axiomatic global attributions) and LIME's properties (locality),
respectively, which temper subjective major/minor influence tallies and retain (at the ward level)
important operational matters like access, dwell time, and grid integration. Most notably, though, the
resulting pipeline is transparent, each factor’s contribution can be traced from the explainers to a final
weight vector that sums to 100%, and benefit/cost directions and class ranks from the original study are
preserved for policy consistency.

For planners, these have three practical implications. First, this step can document weight setting —
commonly been the most controversial stage with a traceable, model-agnostic evidence-base to
minimize dependence on fixed expert priors. Second, higher-quality validation of finalists means more
confidence in alternative sites, leading to fewer permits waved on and off the field. Last but not the
least, since our explainability layer is modular, cities can also refresh weights if they come up with new
stations or if demand shifts without having to re-engineer the MCDM stack. Future studies can report
the full set of comparative metrics (ROC-AUC, PR-AUC, calibration, reclassification improvements)
for a wider range of cities and test LIME-SHAP fusion sensitivity to alternative rules. By adding the
grid-capacity, pricing dynamics and user charging behavior in the constraints, it will reinforce long-
term planning. Notwithstanding, in the Mumbai case, its incorporation to explainable Al into MIF-
weight calculation has significantly enhanced robustness and credibility of EVCS siting decisions while
maintaining workflow interpretable and policy-ready.
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