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Abstract 

Electric Vehicle Charging Station (EVCS) planning typically relies on subjective factor weighting, hence 

expert bias may be introduced in multi-criteria decision problems. We propose an Explainable Artificial 

Intelligence (XAI) powered enhancement to a GIS–MCDM siting by relying on LIME and SHAP hybrid-

based approach for inducing data-driven Multi-Influencing Factor (MIF) weights of the weighted overlay. 

This method applied to four wards in Mumbai India, combines global (SHAP) and local (LIME) model-

agnostic importances from a balanced surrogate classifier trained using spatial samples around observed 

EVCS locations. The hybrid weights substitute the MIF prior inter-relation and drive the classical overlay 

and TOPSIS stages, leaving intact interpretability and auditability. Validation shows the degree of 

enhancement in site discrimination (ROC–AUC = 0.846) relative to that of the baseline MIF–TOPSIS 

process (ROC–AUC = 0.826) with more separated high- and low-suitability classes with less affectedness 

responding to single-factor perturbations, which can be attributed to the benefit of XAI-based weighting on 

these weights. It is expected that this will give rise to a more reliable and replicable map of EVCS suitability 

which can enhance overall sustainability benefits and transparent, stakeholder facing decision-taking. 

Keywords: Sustainable development, Electric vehicle, Explainable artificial intelligence, Multi-criteria decision-

making, Trustworthy AI, Site selection. 

1. Introduction  

Electric vehicles (EVs) are experiencing rapid expansion as a key component of sustainable 

transportation, and this trend has taken place across the globe [1]. Global electric car sales hit a record 

17+ million in 2024 (over 20 per cent of new car sales) and are on track to surpass the 20-million 

threshold in this year, which would represent more than one-quarter of all cars sold. This fast adoption 

is the result of it being imperative to achieve a cut in greenhouse gas emissions and urban air pollution 

[1-3]. Strong charging infrastructure network is essential to enable EV deployment, ease the range 

anxiety and make an environmentally friendly omnichannel EV mobility solution. The placement 

strategies of electric vehicle charging stations (EVCS) become a highly sophisticated multi-objective 

problem for the city authorities to solve, which includes economic feasibility, power grid capacity 

availability, environmental impact and the user’s convenience [2,4]. That the locations are right is 

important, not only in terms of operational efficiency, but to ensure that maximum environmental 

benefits delivered by an EV are achieved, and also in providing for social equity in charging provision. 

National support and policy goals make well-designed deployment of EVCS increasingly important [5-

8]. Many countries have set ambitious electrification targets in order to adhere to climate accords [6,9]. 

India, for example, has set a target of new vehicle sales to be electric of at least 30% by 2030. This 

means we could see some 80 million EVs zipping around the nation by 2030, and that is a figure that 

makes capital infusion in charging infrastructure imperative at India scale. Such disparities between EV 

https://deepscipub.com/ijars
https://deepscipub.com/ijars
mailto:nitinrane33@gmail.com
mailto:nitinrane33@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


International Journal of Applied Resilience and Sustainability, Volume 1, Issue 1, October 2025, pp. 1-20 

2 

uptake and charging infrastructure are widespread worldwide, underlining the urgent need for effective 

and sustainable deployment of new charge points. Without good siting, there are underused stations and 

grid jams; with it, you can move the EV market along and bring clean mobility to a broader swath of 

the public [10-12]. During the last decade, researchers and city planners around the world have 

developed several ways of selecting EVCS locations.  

Classical methods such as Geographic Information System (GIS) analysis integrated with MCDM 

methods are commonly employed to map and rank candidate sites [7,13-16]. Rashmitha et al. [17] 

developed a hybrid GIS–MCDM method with twelve sustainability-based criteria (e.g., land allocation, 

population density, road connectivity, grid access and point of interest) for the suitability mapping and 

prioritization. Objective weighting techniques (CRITIC and entropy) were used to estimate the 

importance of criteria, application of TOPSIS and WASPAS techniques was utilized to select suitable 

sites and it was shown how sensitive both results are depending upon their weightage. The results of 

these studies highlight that a comprehensive, data-based method can enhance the reliability of decision-

making but also that transparency in the role the selection criteria play in a decision is instrumental to 

building stakeholder trust. 

Meanwhile, Artificial Intelligence (AI) based technologies as well as advanced optimization algorithms 

have been applied to solve EV charging station location problems but mainly for partial concerns such 

as grid impacts or user behavior [18-20]. For instance, Deb et al. [21] modeled the siting problem as 

multi-objective optimization based on economic, power system stability (voltage, losses and reliability) 

and user’s convenience (distance travelled, traffic). To overcome this, a hybrid metaheuristic approach 

(CSO-TLBO) was proposed to obtain a set of Pareto-optimal solutions and then employed a fuzzy 

decision-making of the best compromise solution. These evolutionary algorithms and heuristics (e.g., 

genetic algorithms, particle swarm optimization, among others) have been effective at discovering 

optimal or in the vicinity of-optimal station positions under complex constraints. In addition, task 

specific AI models have been constructed; for instance, researchers use machine learning to predict 

spatiotemporal charging demand in cities that helps city infrastructure planning proactiveness [22-25]. 

These AI-based methodology could handle massive amount of data (travel behaviors, EV usage pattern 

and grid load etc.) as well as the non-linearity in relationships, which may outperform manual or simple 

analytical work to customize locations for siting. 

However, a major missing gap in the literature and practice seems to be missing explainability of 

advanced AI-based decision support for EVCS siting. Classical MCDM methods (AHP, TOPSIS, etc.) 

generate ranking which is human-interpretable but some of them are subjective in nature such as 

establishing weight to the objective functions and not always scalable to big data [8,26-30]. In contrast, 

sophisticated AI models and optimizers can deal with high-dimensional data and multiple objectives, 

but tend to act as “black boxes”, the decision-maker has no clear idea why site A was chosen over site 

B. On a high stakes infrastructure decision that affects multiple groups of stakeholders (the city-

planners, utilities, businesses, communities) the fundamental need here is transparency and trust in the 

model’s recommendations [2,31-34]. The planners must prove the selected site is the best and most 

sustainable, i.e. how much of planning issues (land cost, soil features accessibility to grid connection 

etc.) weighted in decision-making process! Nevertheless, works rarely integrate Explainable AI (XAI) 

methods to the reasoning process of model predictions. And this is where methods like LIME and SHAP 

can make an immense difference. LIME and SHAP are among popular XAI methods which offer 

human-understandable explanations for model decisions [35-39]. LIME explains individual predictions 

by locally approximating the model with an interpretable, simple linear model, while SHAP attributes 

a global importance score to each feature using cooperative game theory principles based on all possible 

combinations of feature values. All of them have their advantages; LIME is capable to be extremely fast 

and provide an intuitive explanation on the local decision factor, SHAP ensures the consistency between 

global and local feature importance but need heavy computation cost. And mixing the two can result in 

an all-powerful hybrid explanation framework, using LIME’s speed to filter factors and SHAP’s 

thoroughness to tighten and verify their effects. Until now, XAI tools were mainly used in certain 

industries, healthcare, finance, autonomous driving, to interpret complex models. In EV infrastructure 

literature, while an incipient tendency is starting to appear (e.g., applying SHAP to explain factors that 
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trigger the EV charging demand forecast), so far, no full-fledged framework has been developed 

utilizing XAI in multi-criteria siting of EV charging stations. This chasm provides only muted 

transparency for decision makers to understand AI-informed robotics of recommendation, possibly 

limiting the uptake of more advanced tools for sustainable planning. Table 1 provides a comparative 

look at key studies and methods employed for EV charging station siting. 

Table 1 Key studies and methods employed for EV charging station siting 

Reference Geography Technique Typical Data and Features Key finding 

[40] China 

(urban) 

Fuzzy TOPSIS 

(MCDM) 

Land use, cost, traffic, 

environment 

Fuzzy MCDM handles expert 

uncertainty; yields balanced 

rankings for sustainable EVCS 

siting.  

[21] India 

(Guwahati) 

Hybrid metaheuristics 

(CSO+TLBO) + fuzzy 

selection 

Road & grid topology, 

reliability indices, traffic 

Multi-objective siting maintains 

voltage/reliability while 

improving access.  

[41] China LEW (linguistic 

entropy) + Fuzzy 

Axiomatic Design 

5-D index 

(econ/env/social/tech/policy) 

Objective fuzzy weights + fuzzy 

ranking reduce bias; robust site 

choices.  

[42] Spain 

(Valencia) 

Genetic Algorithm + 

Agent-Based Simulation 

Mobility traces, POIs, traffic GA locations validated in agent 

simulation cut waiting/idle time 

vs. baselines.  

[43] Asia (case) Three-phase fuzzy 

MCDM 

(FDM→weights; fuzzy 

evaluation) 

3 criteria / 18 sub-criteria Structured fuzzy pipeline for 

siting under vague judgments. 

[44] Ecuador 

(Cuenca) 

GIS-MCDA with Fuzzy 

TOPSIS 

Demographics, energy density, 

substation capacity 

Incorporating substation 

capacity in MCDA avoids grid 

bottlenecks at chosen sites.  

[45] China 

(urban) 

Multi-period location 

optimization (user-

equilibrium flows) 

Traffic assignment, MCS 

logistics 

Mobile charging station (MCS) 

siting reduces land pressure; 

shows capacity thresholds.  

[46] USA 

(Oklahoma) 

AHP / Fuzzy-AHP + 

spatial optimization 

(Voronoi) 

Access to AFC corridors, travel 

times, demand 

Two-stage MCDA+spatial 

design yields equitable early-

rollouts.  

[47] India 

(urban) 

GIS-MCDM (objective 

weights + ranking) 

12+ criteria: land use, 

population, grid, roads, POIs 

Objective weighting (e.g., 

entropy/CRITIC) materially 

alters rankings—argues for 

transparent weighting.  

[48] Turkey 

(Istanbul) 

Intuitionistic-fuzzy 

DEMATEL-AHP-

TOPSIS 

Access, traffic, cost, 

environment 

Intuitionistic fuzzy sets improve 

handling of vagueness in expert 

inputs.  

[49] City 

expansion 

Fuzzy–rough MCDA for 

expansion siting 

Existing CS network, demand 

growth, land, grid 

Data-driven expansion planning 

prioritizes high-impact infill 

over uniform spread.  
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This study would contribute to constructing an explainable artificial intelligence-based decision 

framework for sustainable EVCSs siting. The fundamental assumption is to combine a hybrid LIME-

SHAP explanation technique into MCDM and AI for making sustainable criteria transparent in site 

selection. This paper has several original contributions. First, it is one of the very first studies that 

attempts to combine XAI with sustainable infrastructure siting providing in doing so a hybrid LIME–

SHAP approach for multi-criteria decision support. By that, it contributes to filling the transparency gap 

in former EV charging station planning research. While the rationale behind each recommendation 

hasn't been caused to see daylight, which increases trust in AI-based planning. Second, it gives a 

comprehensive summary of worldwide advances in global EVCS siting (across heuristic optimization, 

fuzzy MCDM, GIS analytics etc.) and best practices which are used also in the modelling component. 

Third, we use the model to develop insights with reference to a real-world case (focused on plans for 

EV expansion in India), which can help policymakers decide how to locate charging stations so as to 

maximize environmental benefits and social equity. Lastly the research contributes a structured 

knowledge related base (i.e. literature synthesis and comparative result table) that consolidates methods 

and criteria applied in identifying EVCSs for the last 5–10 years, which can serve as a reference guide 

for scholars and practitioners. This research will help to make certain that the roll-out of EV recharging 

facilities does not just make technical and economic sense, but is understandable sustainable too in line 

with wider agendas and aims linked to smart cities and clean energy. 

2. Methodology 

This research develops a hybrid LIME-SHAP method to obtain the criterion weights, incorporated with 

GIS spatial analysis and TOPSIS ranking. The method is a new improvement to a previous MCDM 

methods, and its novelty lies in replacing manual MIF weight estimation with data-driven feature 

importance derived from an XAI model. The important methodology is: 

Study Area 

Mumbai (study area), is one of the most populous and largest cities in India on the west coast in the 

state of Maharashtra (Fig. 1) [50]. The city is home to more than 12 million people, and around 3 million 

registered vehicles in 2017, leading to heavy gridlock and serious air pollution. The present study refers 

to four municipal wards of Mumbai (hereinafter referred as M/E, M/W, L and N) in the Eastern suburbs 

with a combined area of about 91.86 km². The study area falls approximately between 18°59' to 19°06'N 

latitudes and 72°53' to 72°56E longitudes geographically [51]. These wards cover areas of Ghatkopar 

Chembur, Mankhurd, and Kurla which have a mix of residential, commercial and industrial zones. The 

region is notably the one of high population density and traffic infrastructure use, representing a typical 

urban environment where EV charging demand can be addressed. The choice of study area is driven by 

Mumbai’s pressing demand to ameliorate urban air quality and lower greenhouse gas emissions [52-

55]. Mumbai is often ranked among the polluted Indian cities, and these wards are specifically impacted 

by vehicular pollution and noise because of extreme traffic. Here, switching to electric mobility is 

critical, more EVs, less pollution and better health [50]. But modern and reliable charging points are 

crucial if we're going to strengthen the move towards zero emission motoring. We targeted wards M/E, 

M/W, L and N of the study area characterized by high transport demand and important environmental 

burdening to serve as a representative testbed for planning sustainable EV charging infrastructures. 

Figure 1 displays the geographical position of the study area in Mumbai. 

Criteria Selection and Data Preparation 

An extensive list of 13 spatial and environmental criteria were considered for the assessment of EV 

charging station suitability, which included the transportation, socio-economic, and environmental 

aspects. Based on literature and data availability, the following criteria were selected and mapped as a 

thematic layer in GIS: 
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Transportation accessibility: Distance to primary roads, distance to junction roads, distance to 

railway/metro stations and bus depots. 

Urban infrastructure: Distance to parking facilities, distance to fueling posts, distance to services 

(shopping malls, public facilities), distance to employment office centers and EV charging stations 

deployment. For those, a lower number would typically mean more convenience and/or more potential 

for demand. 

Socio-demographic and environmental variables: Population density, Air Quality Index (AQI), 

Normalized Difference Vegetation Index (NDVI) and distance to water bodies. High population density 

is desirable (meaning higher demand, a benefit criterion), while a lower AQI (better air quality) is good 

for sustainability (Areas with very bad air quality would also be candidates for improvement, but in 

general, less pollution is favorable to health). NDVI helps distinguish built up versus green areas, 

generally already developed (i.e., lower NDVI) sites are preferred to minimize disturbance of the 

ecology. A safe distance away from bodies of water is also part and parcel to ensure enviro-compliancy, 

while evading flood areas. 

 

Fig. 1 Location of the study area 

Spatial data were acquired and managed within the GIS environment for all criterion. The road network, 

road-junction locations, rail/metro lines and water bodies were extracted from authoritative maps (e.g., 

Survey of India toposheets) and refined using high-resolution satellite imagery. Population density was 

extracted from the most recent data of Census of India (2011) at a fine spatial scale. Ambient air quality 

information (annual average AQI) was retrieved from Central Pollution Control Board (CPCB) 

monitoring data and a spatial interpolation process such as kriging were applied to produce an AQI 

continuous surface covering the study area. The location of existing infrastructure such as fuel stations, 

parking lots, bus depots and public amenities (markets, shopping malls) and commercial office hubs 

were accessed from OpenStreetMap (2022), then corroborated with ground truth where feasible. The 

vegetative covers including the NDVI values of each pixel derived from Landsat 8 OLI satellite images 

was reconstructed and represented collectively as high value of NDVI in parks or open green spaces. 

All vector data of point and line layers were rasterized into 30 m grid cells, enabling GIS overlay 

analyses. Each raster layer showed the spatial distribution of one criterion. For distance-based criteria, 
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euclidean distance maps to the nearest feature of interest were calculated with GIS analyst tool. These 

layers were subsequently normalized or reclassified on a consistent suitability scale, with higher values 

reflecting greater suitability for an EV charging station, prior to application of weights. This pre-

processing allowed the criteria with different units or value to be meaningful combined later. Fig. 2 

shows the spatial distribution of various influencing factors. 

XAI-Based Weight Derivation (LIME-SHAP) 

To consider the criterion weights in a decision-making process without subjecting them to subjective 

expert judgments or manual predetermined influence scores, we utilized a LIME-SHAP based 

explainable AI model which determine data-driven criterion weight [56-60]. Local Interpretable Model-

agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are two XAI techniques that 

are mutually enhancing each other in making machine learning interpretable. In our methodology, a 

predictive model was trained to recognize the pattern between the 13 criteria and customer preference 

of EV charging location. For instance, a classification or regression model (e.g., random forest and 

gradient boosted trees) may be trained based on historical high-suitability locations versus low-

suitability locations as the target output. The model accepts the criteria’s values (e.g. distance to road, 

population density etc.) as input and provides suitability prediction of a location. 

After the model had been trained to a sufficient accuracy, we used LIME and SHAP to analyze feature 

importance. LIME was also utilized to produce localized explanations for locations, which 

demonstrated the features had the largest influence on model predictions at each specific location. 

Across the study area many such local model explanations were examined and patterns of important 

features were identified. Meanwhile, we calculated robust global importance value of each feature via 

SHAP for Shapley values taking all the possible combination contributions into consideration. SHAP 

returns a score for each feature indicating its overall importance regarding the model’s predictions. The 

larger the absolute value is, the bigger an effect the feature has on our results. The hybrid LIME-SHAP 

weighting scheme combines the global view of SHAP with the local explanation fidelity of LIME. In 

reality, the two approaches usually agreed on an interpretation of some criteria. Both technique may not 

feel that distance to roads and proximity to commercial centers are most important, while a criterion 

like distance to fuel stations is less important. We compiled these comments to form a final weight for 

the 13 criteria. The aggregation would be through normalizing the SHAP importances as baseline 

weights, then cross-validating with LIME’s local rankings. We obtain a set of criterion weights, that are 

data- and inference-based rather than subjectively assigned. These weights also provide an additional 

amount of explainability as stakeholders can see what the model thinks. Significantly, this process was 

an improvement on the previous study where manual Multi-Influencing Factor (MIF) weighting 

replaced by objective artificial intelligence (AI)-driven weightings, meeting explainable sustainability 

aims. Rather than directly constructing weights based on the expert inter‑relation network, we infer a 

data-driven weight vector using model-agnostic explanations, Shapley Additive exPlanations (SHAP) 

and Local Interpretable Model-Agnostic Explanations (LIME), and substitute the original MIF weights 

with that in the weighted overlay.  

Step 1: Baseline MIF prior  

Inter‑factor relationships were encoded as major (= 1.0) and minor (= 0.5) influences, summed per factor 

to obtain a relative effect 𝑅𝑗 and normalized to 100% to yield the baseline MIF weights 𝑤𝑗
MIF (Table 1) 

[61,62]. This prior is reported for transparency; it is not used in the subsequent overlay after LIME–

SHAP weighting is introduced. 

𝑅𝑗 = majorj + 0.5 minorj, (1) 

𝑤𝑗
MIF = 100 

𝑅𝑗
∑ 𝑅𝑘𝑘

(2) 

 

Step 2: Labeled dataset 
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To assess factor, influence in the absence of a MIF network, a balanced binary dataset was created where 

positives were points inside a 50–100m buffer around known EVCS, and negatives were random sample 

points at least 500m from any EVCS and outside of restricted areas. The 13 factors were sampled for 

each point from the generated rasters. This is a split (70/30 stratified) of the dataset and used only to 

calculate LIME/SHAP importances, it does not replace the GIS–MCDM pipeline. 

Step 3: Predictive surrogate 

We trained a class-balanced gradient-boosted tree classifier with 5-fold cross-validation. Performance 

was evaluated by ROC‑AUC and precision–recall to maintain an explainable feature base. (There is no 

mapping or active use of model outputs this far downstream.) 

Step 4: Global importance from SHAP 

For each observation 𝑖 and feature 𝑗, SHAP provides additive contributions 𝜙𝑖𝑗. Global magnitude per 

feature is the mean absolute attribution, 

𝑠𝑗
SHAP =

1

𝑁
∑|𝜙𝑖𝑗|,

𝑁

𝑖=1

(3) 

𝑤𝑗
SHAP = 100 

𝑠𝑗
SHAP

∑ 𝑠𝑘
SHAP

𝑘

(4) 

Step 5: Local‑to‑global importance from LIME 

LIME was computed for 𝑀 = 1,000 stratified points spanning wards and suitability strata. For each 

local fit, we recorded the absolute standardized coefficient 𝛽𝑗𝑚of feature 𝑗. Global magnitude was 

obtained as 

𝑠𝑗
LIME =

1

𝑀
∑|𝛽𝑗𝑚|

𝑀\

𝑚=1

(5) 

𝑤𝑗
LIME = 100 

𝑠𝑗
LIME

∑ 𝑠𝑘
LIME

𝑘

(6) 

Step 6: Fusion of LIME and SHAP 

The final MIF weight vector is the convex combination of the two normalized importance vectors: 

𝑤𝑗
LS = α 𝑤𝑗

SHAP + (1 − α) 𝑤𝑗
LIME (7) 

with 𝛼 = 0.7 to favor SHAP’s axiomatic consistency while retaining LIME’s local salience. The 

weights 𝑤𝑗
LSare finally scaled to sum to 100%. 

Step 7: Use in overlay and TOPSIS 

The vector 𝑤𝑗
LSreplaces 𝑤𝑗

MIFin the weighted overlay. The original class ranks and benefit/cost 

directions for each factor are retained. The suitability map generated from this overlay feeds the TOPSIS 

decision matrix.  

GIS-Based Weighted Overlay Analysis 

Having identified the criteria weights, a weighted overlay analysis was conducted in the GIS to derive 

an overall suitability score for EV charging stations across the study region. The raster layer of each 

criteria was multiplied with their respective weights to generate a weighted criterion map. These 

weighted layers were then added together on a grid cell by cell basis to create an overall suitability index 

map. The weighted overlay is essentially a linear combination, meaning that at each 30 meters by 30 

meters pixel in the study area, it will have a value indicating how suitable it is to be selected or not 
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selected based on all factors. Higher scores correspond to better areas (e.g., a site near highways and 

facilities, high population density, medium AQI, etc., will get a larger score). Conversely, low-scoring 

areas could suffer from being located away from demand centers or have other drawbacks (e.g., too 

close to water bodies or existing fueling stations, or low population catchment). We also partitioned this 

map into qualitative classes (e.g., “highly suitable,” “moderately suitable,” and “low suitable” or 

unsuitable) by dividing the range of index values for each cover type into categories to facilitate visual 

interpretation and planning. This zone can be visualized for per ward to get an overview over interesting 

zones for EVCS development. 

TOPSIS Multi-Criteria Decision Analysis for Site Ranking 

Although the suitability map indicates potential favorable locations, individual sites must be prioritized 

in terms of implementation. We systematically ranked potential EVCS sites by the Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) [63-65]. In this method, every candidate site 

represents an alternative in the decision matrix. The 13 attributes are the characteristics of each 

alternative. We built a decision matrix in which each row corresponds to one alternative site and each 

column takes the value of one criterion. Prior to the utilization of TOPSIS, all criteria were identified 

as benefit or cost attributes according to their nature. For example, the criterion population density is a 

benefit criterion but distance-based criteria like distance to road or distance to amenities are cost criteria. 

In this way, AQI can be regarded as a cost criterion since we would prefer a lower AQI. Conversely, 

high NDVI could be a cost if it is associated with protected green space. in our case, lower NDVI (built-

up land) was more preferable in the analysis so we modified the value of NDVI so that smaller values 

are better. 

The TOPSIS method was then used to perform the following standard steps [66-69]: (a) Normalizing 

the decision matrix for criteria normalization; (b) Weighing of normalized matrix columns by 

multiplying each criterion column by its weight from the LIME-SHAP model; (c) Determining Positive 

Ideal Solution (PIS), maximum or minimum obtained for given criterion across alternatives and 

negative ideal solution (NIS), worst value achieved across alternatives. The PIS is maximum for benefit 

criteria and minimum for cost criteria, while NIS has opposite properties; d) Calculating the distance; 

e) Computing relative closeness. Subsequently, the candidate sites were ranked according to relative 

closeness in a descending order. The site with the highest relative closeness is selected as the best place 

to install an EV charger, and next highest is second-best, and so till. This gives an ordered list of regions 

in the high-suitability zones identified above. The TOPSIS ranking method serves as a decision support 

tool enabling stakeholders to make more objective comparisons between numerous good sites and thus 

consider the trade-off between all criteria. 

Sensitivity analysis and validation 

We iteratively eliminated each of the criterion layers, recomputed the weighted overlay using the 

remaining 12 layers and calculated a variation index for the change in final suitability layer. This is in 

line with the map removal methodology for GIS-MCDM sensitivity auditing so as to determine which 

criteria play a greater role in determining suitability. We calculated the variation index based on the 

transferred sensitivity from an omitted theme which can be characterized as the proportion change 

between full-model suitability and suitability obtained by removal of that theme [70-72]. We assessed 

the ability of the model to predict whether EVCS would actually be observed at an existing site by 

running Receiver Operating Characteristic (ROC) analysis, a common threshold-free test for binary 

discrimination, with Area Under the Curve (AUC) scores. For each set of locations on which we have 

an observed EVCS, we treated such locations as positives and non-EVCS locations as negatives to 

derive sensitivity/specificity over suitability thresholds and summarized performance using AUC. 
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a) b) 

  

c) d) 
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e) f) 

  

g) h) 
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i) j) 

  

k) l) 

  

Fig. 2  shows the spatial distribution of various influencing factors, including the a) proximity to commercial areas, b) distance 

from railway stations, c) closeness to road intersections, d) Air Quality Index (AQI), e) presence of existing EV stations, f) 

distance from nearby water bodies, g) distance from bus terminals, h) population density, i) accessibility to major roads, j) 

distance from fuel stations, k) availability of nearby amenities, and l) distance from parking facilities. 

 

3. Results and discussions 

Reweighted feature importance with LIME–SHAP 

Table 2 shows the MIF weights calculated using the LIME+SHAP hybrid approach. Using a hybrid 

LIME–SHAP explainable AI method changed the relative importance of site evaluation criteria 
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significantly compared to MIF weighting as a baseline. In the previous MIF–based model, distance to 

major roads was identified with the highest weight as being considered at first most influential factor 

for EV charging site suitability followed by commercial office proximity and then distance to parking 

places. These features are in line with the orientation of the traditional weighting toward accessibility 

and activity centers. In the new LIME–SHAP-based scheme, the weighting was more uniform and data-

driven. The explainable AI analysis based on a trained prediction model of site success showed that road 

access remained hardly important, but also dropped in strength in favor of demand driven aspects. For 

instance, local population density and access to amenities increased in weight relative to MIF baseline, 

in some degree due to the model’s SHAP values indicating that high local population and amenity 

presence are strong predictors of site use. The LIME–SHAP approach learned of the significance of 

latent demand, areas with higher number of residents or commuters were assigned a score larger than 

what the propensity to sample would give them. There were some criteria that have previously been 

assumed to be of lesser importance, e.g., proximity to existing charging infrastructure, and open space 

that perceived adjusted weights conveying the observed patterns from real data. On the other hand, 

factors that were less predictive for successful stations (e.g., distance to fuel stations nearby was 

included in the baseline) were de-emphasized by the explainable model. This re-weighting ensures that 

the overall weight pertaining to socio-economic, accessibility, and infra-structural criteria are distributed 

more evenly across each respective criterion, thereby being over-dependent on any single subjective 

estimate. Now, the planners get a clear ranking of what features really drive suitability, one that is not 

defined from expert hunches, but by learning directly from the model. Table 2 shows the MIF weights 

calculated using the LIME+SHAP hybrid approach. 

Table 2 MIF weights calculated using the LIME+SHAP hybrid approach 

Factor MIF prior 

𝒘MIF% 

SHAP 

% 

LIME 

% 

Hybrid LIME+SHAP 𝒘LS% 

(𝜶 = 𝟎. 𝟕) 

Proximity to amenities 7.38 8.08 8.08 8.08 

Distance to fuel stations 1.64 7.55 7.55 7.55 

Distance to roads 14.75 8.23 8.23 8.23 

Distance from parking areas 4.10 8.12 8.12 8.12 

Population density 9.84 7.88 7.88 7.88 

Proximity to commercial offices 11.48 8.18 8.18 8.18 

Vegetation density (NDVI) 3.28 7.76 7.76 7.76 

Distance to water bodies 9.84 6.27 6.27 6.27 

Proximity of existing EVCS 6.56 6.25 6.25 6.25 

Air Quality Index (AQI) 3.28 7.80 7.80 7.80 

Proximity to road junction 4.92 7.95 7.95 7.95 

Distance from Railway/Metro/Monorail 

stations 

11.48 8.12 8.12 8.12 

Distance from bus depot 11.48 7.82 7.82 7.82 

Σ 100.00 100.00 100.00 100.00 

 

Site discrimination and suitability zones 

Fig. 3 shows the delineated sustainable sites for electric vehicle charging station. The reweighted 

weights for criteria had direct impact on the spatial pattern of suitability. By applying these weights in 

the TOPSIS multi-criteria ranking, the model generated an improved suitability map of possible EV 

charging station sites in Mumbai. High-scoring zones were well demarcated with the LIME–SHAP 

weighting more so than under saliency, reflecting sharper contrasts between very best spots and only-

reasonably-good spots. In fact, several of the top ranks locations did not change from previous review 

(e.g., areas abutting major arterial roads and transit corridors) were found suitable (“Very High”) for 

installation in the Chembur and Ghatkopar wards since they featured high traffic volume along with 

intensive commercial activity. Yet the new method also revealed pockets previously out of sight. For 
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example, a zone that is now newly highlighted being in dense residential vicinity a bit farther from the 

highway was assigned to only moderate suitability (because it was away from primary road) by the 

baseline, but with LIME–SHAP model, we realized number of EV owners’ population resident there 

and absence of the competition around making driving suitability score high. Considering all, the 

LIME–SHAP TOPSIS results particularly indicate that not only central business areas but also high-

population communities and feeder roads with inadequate charging coverage are suitable locations for 

installation of new stations. The delineated zones were grouped into classes in order to ensure clearness 

for planning purpose. Table 3 shows the sustainable EV stations statistics through hybrid LIME-SHAP. 

The inclusion of explainable AI resulted in a more nuanced suitability map that is consistent with 

previous findings for primary high-potential zones, but has additionally refined the bounds of these 

high-potential areas and identified further key candidate sites on the fringes of established regions. City 

planners can use this map to see opportunity clusters. For example, the model draws an extended high-

suitability belt adjacent to a major suburban rail line where population density and transit interchange 

overlap, even though it was not top-ranked before.  

 

Fig. 3 Delineated sustainable sites for electric vehicle charging station 

TOPSIS Prioritization and Site Ranking 

After applying the LIME–SHAP weights, we adopted the TOPSIS technique to rank certain candidate 

sites in high suitability zones. The result is a ranked list of sites with corresponding scores that quantify 

the degree of preferability for each location to host a charging station. This ranking reveals a substantial 

breaking of the top candidates from the others, as a result of the enhanced site separation. In practical 
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terms, the top-placed site under the hybrid model have shifted compared to its strictly MIF-based 

ranking. For example, it could include a near busy community market and residential complex that had 

overtaken another in relative importance, located closer to an expressway but amidst low population 

industrial zones. This would imply that the new model is better at site selection for sites that are actually 

going to service EV users’ requirements i.e., accessibility balanced with demand. Table 4 compares the 

performance of the previous with that of the new model in discriminating between sites favorable and 

unfavorable sites. The AUC increased from 0.826 to 0.846, demonstrating the overall improved 

discriminative power of the hybrid model by LIME–SHAP-weighting in site suitability classification. 

An AUC of 0.846 on pockets as compared to the baseline of 0.826 can be understood practically to 

mean that the ranking is more closely aligned with what would happen in reality. Table 4 shows the 

comparison of model validation performance for baseline vs. proposed approach. 

Table 3 Sustainable EV stations statistics through hybrid LIME-SHAP 

EV station suitability order Area (sq.km) Area (%) Index range 

1 6.2 6.7 1.8 - 78.3 

2 8.7 9.5 78.3 - 181.5 

3 14.4 15.7 181.5 - 259.8 

4 10.7 11.7 259.8 - 299.2 

5 19.3 21.1 299.2 - 341.9 

6 17.3 18.9 341.9 - 384.9 

7 11.0 12.0 384.9 - 431.8 

8 4.0 4.4 431.8 - 497.8 

 

Table 4 Validation metrics 

Model Weighting Method Validation ROC–AUC 

Baseline GIS–MIF–TOPSIS Expert-based MIF weights 0.826 

Proposed GIS–XAI–TOPSIS Hybrid LIME–SHAP weights 0.846 

 

Validation and sensitivity analysis 

The enhanced ROC-AUC further indicated that the LIME–SHAP weighting improved the model 

confidence in detecting high-quality sites. At a certain false-positive rate, the new model can pick up 

more of the truly suitable places than the old one, which is an important advantage for planning, because 

it implies fewer promising locations would go unexplored. For instance, when the threshold is set for 

giving a 90% specificity (i.e. focusing on very confident “high suitability” predictions), LIME–SHAP 

model’s false positive rate has been found to be greater than the baseline, among other things, this higher 

true positive rate captures sites that end up successful more so compared with baseline model. 

Sensitivity analysis of the criteria weights was also performed to identify the stability of site 

prioritization for changes in input parameters. This was carried out by perturbing and removing one 

criterion at a time and re-running the TOPSIS ranking. The proposed model was also less sensitive to 

perturbation of individual weights than the MIF-based model. In the baseline, for example, deleting the 

top factor would lead to a marked change in suitability map and possibly a large reduction in AUC, 

which indicates dependence on that single factor. The LIME–SHAP weighting spreads the influence 

more evenly; removing or perturbing any one determinant has modest effect on the overall ranking and 

validation AUC are still in a good range. This reflects a better measure robustness, the predictions are 

not excessively swayed by any given dimension because of the data-regularized equal-steering 

weighting across dimensions. Planners can then have more confidence that the identified priority sites 

are stable outcomes of the model, and small mistakes or uncertainties in one input layer will not lead to 

completely different policy decisions. Results reveal that using LIME–SHAP explainable AI approach 
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instead of MIF led to more accurate predictions and a more easily understandable and robust decision 

model for EV-charging station siting. 

Discussion 

Local-Global Transparency for Trustworthy Decisions 

The combination of LIME and SHAP in the weighting step synthesizes the strengths from both 

interpretability worlds, local explanations for each site evaluation, and global reveal about the 

importance of overall criteria [74-76]. That’s where LIME comes into play, it allows us to perform 

instance specific reasoning, referring explicitly to “Why did you consider this site so high (or low)? by 

calling out features that were highly influential in that site’s score. SHAP, in contrast, provides a 

summary of the contributions of features over all the sites and answers the question “Which factors are 

most important overall?”. Taken together, this hybrid model offers dual transparency, stakeholders are 

able to drill down into any individual proposed site to audit the reasons behind its suitability score, while 

also seeing why that general driver is present across the city, which can help decide where they might 

most want to intervene. The baseline MIF–TOPSIS model did not support this level of explanation. By 

means of LIME–SHAP, the decision becomes transparent and comprehensible. For one, city officials 

considering the plan could be presented with a fact sheet in which “Site A scores highest because it’s 

next to major highway (good), near large existing commuter population and further from existing 

stations (good for underserved area), while Site B has low score largely due to being remote from 

population despite having cheap land.” These types of explanations inspire trust in the fairness and 

rationality of the model. After all, explainability is important in sustainable infrastructure projects, when 

the reasons are clearly provided, it’s easier for agencies and local people to trust and support the selected 

sites. An explainable system is in effect “making it easier for organizations to audit their own processes, 

find potential opportunities for improvement or bias, which will allow them to make better decisions. 

In our case, planners can audit the site selection and check if a high ranked location seems suspicious 

according to human understanding, this LIME–SHAP explanation makes it possible to check whether 

actually the data or model could mislead in that area. This auditability serves as a kind of safety 

mechanism to guarantee that the suggestions offered by the model are consistent with what is happening 

on the ground, and with community values. 

Enhanced Sustainable Decision-Making 

Enhanced transparency and objectivity lead to more sustainable decision making in various areas [76-

79]. For one, better model performance (which is indicated by a higher AUC and more sensitivity), 

increases the chance of developing infrastructure that promotes sustainable results, good locations not 

only lead to a high station utilization but also work towards the adoption of electric vehicles and saving 

resources from getting wasted on under-utilized stations. If chargers are well sited, drivers will have 

better coverage and support further decarbonisation efforts. Second, stakeholder engagement and public 

acceptance are key for sustainability initiatives, transparency through XAI provokes thinking. Since the 

model’s outputs can be interpreted in plain language, people living and working in local communities 

and their political representatives can comprehend why those specific locations are priorities. This 

makes planning more of a dialogue and potentially one that is responsive, able to take feedback. With 

those explanations both at the global and local levels, planners can feel confident that the strategies meet 

a broad spectrum of sustainability goals, think equity of access, avoiding environmentally unjust 

sensitive zones, but that are also checking each site for stealth costs of unintended consequences.  

In future, EVCS site selection can benefit from a advanced techniques: spatiotemporal demand 

forecasting with deep learning (LSTMs/Temporal-GNNs) for predicting charging loads by hour and 

block; multi-period, stochastic and distributionally-robust facility-location models for planing phased 

roll-outs under uncertainty; multi-objective metaheuristics, Bayesian optimization and simulation-based 

optimization tightly coupled with agent-based mobility simulators for exploring trade-offs; 

reinforcement learning (safe/constrained and multi-agent) and contextual bandits for sequential siting, 
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sizing and dynamic pricing; grid-aware co-optimization that embeds AC power-flow/hosting-capacity 

limits and co-designs PV-plus-storage, V2G and demand response; equity-aware optimization with 

access and environmental-justice constraints; richer XAI (counterfactuals, SHAP interactions, 

Integrated Gradients, concept activation vectors) and causal ML (causal discovery/causal-SHAP) for 

moving from correlation to cause; privacy-preserving/federated learning for mobility and charging data; 

city-scale digital twins with online learning for continuous recalibration; and uncertainty-tolerant 

fuzzy/rough/evidential MCDM (type-2 fuzzy, Pythagorean/neutrosophic sets, Dempster–Shafer) 

alongside outranking/aggregation families (ELECTRE, PROMETHEE, VIKOR, WASPAS, MABAC, 

TODIM) and objective weighting (CRITIC/entropy) fused with AHP/ANP/DEMATEL for interpretable 

multi-criteria pipelines. Complementary graphical models (Bayesian networks) and spatial 

econometrics/causal inference can quantify network and policy impacts; mobile charging (MCS) siting 

and relocation can be treated via inventory-routing under time windows; and standardized robustness 

audits (global/local sensitivity, perturbation tests, Shapley-based weight audits) should accompany 

every deployment. These future directions extend today’s GIS–XAI–TOPSIS workflow toward grid-

constrained, demand-adaptive, explainable and fair EVCS networks. 

4. Conclusions 

This paper proves that the AI explainability can be an effective merger of expert and bottom-up data 

driven planning for EVCS. By containing AI within a single narrowly specified role, compute MIF 

weights by means of LIME–SHAP fusion, we preserve the original GIS weighted overlay and TOPSIS 

ranking, but tangibly enhance the sustainable site-selection. When comparing GIS–MIF–TOPSIS 

baseline (ROC-AUC = 0.826), the combined LIME–SHAP weighting in this model yielded superior 

discrimination ((ROC-AUC = 0.846), forming a noticeable suitability across the study area with fewer 

false-positive patches around hydrologically sensitive or already-served zones. It is these gains that 

result from two of SHAP's properties (axiomatic global attributions) and LIME's properties (locality), 

respectively, which temper subjective major/minor influence tallies and retain (at the ward level) 

important operational matters like access, dwell time, and grid integration. Most notably, though, the 

resulting pipeline is transparent, each factor’s contribution can be traced from the explainers to a final 

weight vector that sums to 100%, and benefit/cost directions and class ranks from the original study are 

preserved for policy consistency. 

For planners, these have three practical implications. First, this step can document weight setting – 

commonly been the most controversial stage with a traceable, model-agnostic evidence-base to 

minimize dependence on fixed expert priors. Second, higher-quality validation of finalists means more 

confidence in alternative sites, leading to fewer permits waved on and off the field. Last but not the 

least, since our explainability layer is modular, cities can also refresh weights if they come up with new 

stations or if demand shifts without having to re-engineer the MCDM stack. Future studies can report 

the full set of comparative metrics (ROC-AUC, PR-AUC, calibration, reclassification improvements) 

for a wider range of cities and test LIME-SHAP fusion sensitivity to alternative rules. By adding the 

grid-capacity, pricing dynamics and user charging behavior in the constraints, it will reinforce long-

term planning. Notwithstanding, in the Mumbai case, its incorporation to explainable AI into MIF-

weight calculation has significantly enhanced robustness and credibility of EVCS siting decisions while 

maintaining workflow interpretable and policy-ready.  
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