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Abstract

The need to have sustainable supply chain management demands the decision frameworks being jointly
optimal in the economic performance and environmental impact without violating data decentralization
across the stakeholders. The proposed study suggests multiple-level (federated) deep reinforcement learning
(FedDRL) to the optimization of supply chains to unite inventory management, production strategy, and
transportation decisions in conditions of an explicit carbon-emission penalty. The supply chain entities also
train a local deep reinforcement learning agent on local operational data, and periodically, the aggregation of
the parameters is done via federated averaging to create a global policy without collecting all the data in a
central location. The reward is a joint-coding of overall operational cost and emissions through a
sustainability weight 1 which can be tuned allowing the economic-environmental trade-off space to be
steered. The framework was tested using large stochastic simulations of a variety of demand scenarios and
studied with regards to Order-Up-To heuristics, unreinforced non-federated DRL, and centralized
reinforcement learning baselines. Repeated-measures comparisons were used to provide a statistical
significance with an expression of means of a significantly lower total cost and variance of the proposed
approach compared to baselines (p < 0.01). A monotonic and statistically significant change in the results of
cost-emission analysis with different 1 values was found, which indicated the stability of Pareto-efficiency.
Altogether, the findings indicate that federated reinforcement learning is capable of providing almost
centralized performance, high operational efficiency, and governability sustainability, which is a scalable and
privacy-controlling solution to data-driven supply chain optimization.

Keywords: Supply chain, Federated learning, Deep reinforcement learning, Carbon emission, Inventory, Artificial
intelligence.

1. Introduction

Making sustainability the focus of the current supply chain management activity, the activities related
to manufacturing, transportation, and distribution are already high carbon emitters, as well as
environmental degraders, but are also under a severe pressure of being cost-efficient and responsive [ 1-
3]. A very significant percentage of greenhouse gas emission in the world is a result of the activities that
are related to supply chains, thus creating an immediate urgency to establish decision frameworks which
may have a significant positive impact on the economic performance and the environmental
performance [2]. This balance is only difficult due to the fact that supply chains are distributed by nature
among a number of independent firms that have control over various operational steps and may be
limited by data privacy, competition and regulatory restrictions that result into incomplete information
and sub-optimal decisions throughout the globe [2,4,5]. These issues are further complicated with an
operating environment that is closely dynamic and uncertain, stochastic demand, variable lead times,
and risks of disruption which makes the use of traditional static or deterministic optimization methods
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insufficient [6-8]. The appearance of Industry 4.0 technologies has established new conditions to
overcome such problems, especially the digital twin technology, which allows happening in time and
the virtualization of physical supply chain systems in real time and enables simulating, monitoring, and
predicting analytics of the complicated operational conditions [9,10]. Although digital twins
dramatically increase the level of visibility and situation assessment, the existing applications are mostly
limited to decision support and are not autonomous and adaptive controls [11-13]. The reinforcement-
based learning is a highly promising data-driven approach to sequential decision-making in the face of
uncertainty, and has demonstrated potential use in the supply chain such as inventory and logistics,
although the available literature is based on simplified data or centralized data assumptions that restrict
their generalisation into practice [2,14-17]. The distributed nature of sensitive supply chain operational
data over supply chain partners is a critical obstacle to scalable implementation of such learning-based
approaches, which limits the use of centralized model training [9,18-21]. Federated learning offers the
solution to this problem by allowing collaborative model training by sharing model parameters instead
of raw data, hence maintaining the confidentiality of data and leveraging the shared learning, and has
already shown promising results in the prediction of supply chains [22,23]. Nevertheless, the field of
federated learning in supply chain management has not been thoroughly executed, especially within the
context of combining it with autonomous decision-making and sustainability purposes. Even though
digitization twins, reinforcement learning, and federated learning are advances conducted in parallel in
the supply chain literature, no previous research has explicitly introduced and applied simulations with
digital twins to federated deep reinforcement learning using a system of supply chain actors to optimize
both economic and environmental solutions. This study fills this gap with the proposed Digital Twin-
Enabled Federated Deep Reinforcement Learning framework of sustainable operation in a supply chain
to enable joint, privacy-aware, and multi-objective through the minimization of the cost of operation
and carbon emissions in realistic and dynamic conditions.

The objective of this study is to create and put to strict test an intelligent, privacy respecting decision-
making system of sustainable supply chain management which can optimally at once determine the
economic outcomes and the environmentally conscious state under apportioned possession of
information. In order to meet this general objective, the research addresses the following objectives:

1) To develop a scalable Digital Twin-Based Federated Deep Reinforcement Learning (DT-FedDRL)
outlay where the supply chain entities are modeled by the local digital twin environments and a
deep reinforcement learning agent, and a federated learning protocol that enables the entities to
collaboratively learn a policy without the need to share data centrally.

2) To mathematically model multi-echelon supply chain operations as a Markov Decision Process
with stochastic dynamics and multi-objective reward functions clearly encoding operational costs
and carbon emissions, and obtain reusable deep reinforcement learning algorithms tailored to
federated training, including aggregation and statistical algorithms to overcome heterogeneity in
distributed settings of digital twins.

3) To design and execute learning and evaluation processes that achieve stable convergence,
robustness, and statistical validity which include the analysis of the learning dynamics, variance
reduction in the presence of federation of aggregation and sensitivity analysis with regards to
important hyper parameters, such as the sustainability weighting factor in formulation of the
reward.

4) To empirically evaluate the suggested DT-FedDRL model with the help of extensive simulation
experiments based on a representative multi-echelon supply chain case study, to compare its results
with the traditional methods of heuristics and non-federated reinforcement learning, to measure
the performance outcomes with its parameters in terms of the total cost, service level, and carbon
emissions through the strategy of benchmarking.

5) To establish the operational and managerial interpretation of the acquired policies and performance
results, determine conditions under which collaborative federated intelligence produces
economical-environmental synergies, and explain practical deliberations in real-world
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implementation, such as data control and computational infrastructure and inter-organizational
arrangement.

2. Methodology

The digital twin-enabled federated deep reinforcement learning is a framework that consists of several
algorithms and architecture, which we describe in detail. We start by mathematically modeling the
supply chain decision problem as a Markov decision process, followed by our description of the digital
twin simulation environment that has been used to simulate the supply chain environment. We follow
up with the deep reinforcement learning algorithm to be used to maximize local decisions and lastly we
include them with the federated learning mechanism where a group of agents (stations in the supply
chain) use a common policy which is jointly trained.

2.1 Problem Formulation Problem as a Markov Decision Process.

Supply Chain Scenario: We assume a simple but representative supply chain network of many echelons
that is, a manufacturer, a few distribution centers, and retail stores or a few firms managing their part of
the chain. To be concrete, it is possible to consider the fast-moving consumer goods (FMCG) supply
chain having one factory, two regional warehouses, and four retail outlets, but the structure applies to
the large ones. Time is measured into discrete time (e.g. days). At every time period, every supply chain
node will have to take operational decisions. An example is that the factory makes decisions on
quantities of goods to produce, warehouses make decisions on what quantity of goods to re-order again
to the factory and the retail stores make decisions on how much they want to order off the warehouses
or how they can set the price of the products (based on the model of scope of decisions). The decisions
influence both costs (e.g. holding costs, ordering costs, transportation costs) and sustainability measures
(e.g. carbon emission in transportation and manufacturing, energy consumption in storage).

State, Actions and Transitions: We represent every supply chain node as an agent of a Markov decision
process (MDP). State st it of agent i at time t implies the information necessary in making a decision at
that node. It normally involves the amount in stock at that node, the outstanding orders or pipeline stock,
the apparent downstream (customers or the next level) demand and perhaps the time since last ordered
or other information. Other forms of exogenous information that can be part of the state features are the
cost of the fuel (which impacts the cost and the amount of emissions per machine of transportation) or
the availability of production capacity. The aggregate condition of the entire supply chain would be
represented as St = (st!,st?,... stN) of the number of agents/nodes. With full decentralization of
control, every agent has access to its local state st’; where we assume the agents can be partially
informed of a global state, but not fully the agents can learn upon receipt of local information and
whatever information the digital twin network can tell them.

The agents decide to take action as at least each agent, denoted by the letter i selects a single action at
each time. The examples are: the number to order/produce (an integer value), a routing choice (a supplier
or distribution route to follow), or a pricing choice (a continuous price value). The action space of an
agent can be represented as A i. The policy of agent i map, denoted as policy 3 pi 0: takes inputs (the
state) and gives output (a probability distribution over actions (stochastic policy) or a single action
(deterministic policy). The system is then changed to a new state S t +1 after all agents act. The operation
logic and uncertainty of the supply chain are fitted in the transition dynamics. As an instance, when a
warehouse orders 100 units to the factory (action), the subsequent state will display that 100 units are
in transit (are being shipped) and will reach after some lead-time (it may be deterministic or random).
The retail stores experience the customer demand realized (a random variable) which will decrease their
inventory, in case of unsatisfied demand it will be backordered (or no sales made). Capacity is a limiting
fact that may hamper production and any production that is completed will change into inventory. Some
of the dynamics may be complicated, with nonstationary demand, stochastic lead times and nonlinear
interactions (such as the often-infamous bullwhip effect where small changes in demand are magnified
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along the supply chain). It is possible to describe the MDP state transition generally in terms of a
conditional probability:

P(Sts1 1St Ar) ®

where A, = (a}, ....,al) is the joint action profile. We assume this transition function is not known in
closed-form to the agents; instead, we rely on the digital twin simulation to generate these state
transitions. In other words, the digital twin serves as the environment model for the MDP.

Reward Function: The most vital part of our formulation will consist in creating a reward rt’ of every
agent (or a global rewardrt of the whole system), that will acknowledge the economic performance and
the sustainability performance. We may indicate agent reward at time t as:

ri=—(Cl + 1E}) (2)

wherein: C t i: the dollar cost that agent incurs in period t; E t i: the visual cost in units of carbon
pigments (or some other measure of corresponding appeal, e.g. more tonal CO 2 equivalent) imposed
on the activities of agent i in period t; -, la: a weighting factor (expressed in dollar units), which converts
emissions into a corresponding invisible cost. It is the negative sign that we do not desire to acquire
costs and emissions; in the relays usually used in reinforcement learning we maximize cumulative
reward, and changing it to negative it means that this is a minimization objective. The agent (or central
planner) can decide the environment impact weight versus the cost by striking a compromise between
the two variables, i.e. the weighing away the larger the value of the later the higher is his (or her)
readiness to forego a unit of money in order to reduce a unit of emission. The application of a price of
carbon or internal cost of carbon established by the firm would effectively be captured by the application
of the existing value of adopted price of carbon abbreviated as 4.

The formulation of the reward in equation given, i.e. \ref is a crude weighted form of the economic and
environmental performance, which is one of the alternatives to address the bi-objective optimization
problem in a manner of employing a scalarization. More complex sustainability measure, or even even
a hard-bound (e.g. an emissions limit) can be exploited in other formulations, however, in the context
of this paper we adopt the above that provides us with one parameter of trade-off, the continuous trade-
off parameter, i.e. parameter CR. System total reward (going on a centralized perspective) would be
rating’s(i=1)N rt-i- i.e. the sum of the negative of total supply chain cost plus weighted emissions at
time t.

The reinforcement learning agents are meant to reinforcement learn policy in the form of a policy by
maximizing the expected cumulative discounted reward:

mT(rlx E[ LIRS0 Y 7 |1t] ®

Where gamma (0,1) is the discount factor and T is a horizon (or may be infinite with continuing
problems or it may be a finite time horizon with episodic simulations). This is the aim which essentially
involves decreasing the aggregate cost of production of long run + 0.527 emission of the supply chain
following coordinated decision.

Sharing of Information and Observation: Individual agents on the one hand would only observe her
local state st! and perhaps at most information about the other agents (incoming orders or market
prices). In our model, we apply the use of digital twins hence we believe more state information may
be published. In particular, a federation can be connected to link the digital twin of each node where the
latter exchange part of state information on-the-fly (depending on privacy settings). These are just some
examples of potential applications of the realized system: a twin warehouse can send out its inventory
levels to the twin of an upstream factory or a band of nodes can report out demand projections. In fact,
the destruction of data silos as the method of end-to-end visibility available can be regarded as one of
the advantages of applying the digital twins technology. In order to simplify the structure of the RL
formulation, we do not assume that the full world state is observable to all the agents, but would consider
any information sharing information to be realistic. In our experiments (Section 3), the information
which is assumed to be shared will be clarified. The RL algorithm per se is normally implementable
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when there is partial observability (with recurrent neural network or belief states) but which we are not
currently implementing. We do so at the moment by supposing that notable features of states must be
inferred or observed which are required to coordinate these states.

2.2 Digital Twin-Enabled Simulation Environment

Our primary component of a framework is digital twin simulation environment in which the
reinforcement learning agents will be trained. The digital twin is developed on every supply chain
member. The digital twins are high fidelity simulator models that will behave similarly to its real world
analog except that, like all simulation models, the digital twins are evolved based on the actions taken
by the RL agent in addition to the stochastic events (delays or demands etc) experienced by the real
world models. The simulated interactive network is achieved by the digital twins which operate in
parallel as a time-stepping simulator of a supply chain transmitting information to each other.

The most significant aspects of the implementation of the digital twin can be listed as the following:

Simulation Modeling: The discrete- event simulation is employed in the modeling of the processes in
the supply chain of both twins. An example of this is given by the factory twin these will model factory
events (production and processing) and capacity limits and maybe machine failures; a distribution twin
which will model order depletion and reorder depletion (factory request); a transportation twin which
could model dispatch and travel times. The information (orders, demand signals) flow between the
nodes and the flow of the materials are simulated. The software can be recent simulation software, or
even specific Python/Simpy models can be employed - in our case, a Python-based discrete event
simulation will be interacted with the RL training cycle. The digital twins execute in the time of the step
size of one period of decision-making, but the Virginia structure can be made of more precise steps as
these fine steps are needed (e.g. events within one day such as process orders can follow each other
sequentially).

Components: In practical application, a digital twin would receive feeds of real-time updates on an IoT
or enterprise databases (ERP systems) to update its state accordingly to those of the real world. At the
same time in our experiments, it is the supply chain that is being simulated without any errors and the
supply chain therefore is equal to the real and twin. In principle, that means that our twin will be able
to receive up-to-date state variables (inventory levels, etc.) at each episode of decision-making.

Calibration and Validation: The digital twin’s model has parameters that are constructed on real-world
aspects of supply chains. In one case, normal or Poisson (or various other) distributional probability
(with a known mean and variability, which can be seasonal) could be applied to the demand at the retail
nodes. Lead times of the shipment can be stochastic (uniform distribution, or empirical distribution
based on the historical observation). the simulation user is combined with the calculation of the
emissions: e.g., the transportation of a pallet ride of 100 km with the use of a truck generates X kg of
CO., implies that in case the intervention of an agent initiates a specific transport scheme, then the
cognitive extreme emissions may be calculated by the twin. Such emission factors are available as
standard sustainability accounting (including result of conversion factors such as 0.21 kg CO 2 /ton-km
of a medium truck). Output (e.g. kg CO- /unit produced) may be assigned to the emissions produced
during production. These are put into the simulation whereby each action taken would be subjected to
the simulation to generate the corresponding value of Ct; and Et; to generate the reward.

Federation of Twins: The twins are united to one another. This architecture is referred to as federated
digital twin (FDT) and indicates that the simulation of one node can involve the transfer of
messages/event to another one. As an example, a retail twin ( sig ) is sent a demand that needs some
goods, the twin goes on to make a request to its supplying warehouse twin ( sig ), a factory twin
completes the production of goods and an event of the departure is issued to the downstream node.
Essentially, the entire supply chain is modeled through the distributed manner of the network of digital
twins. This is what has been suggested by the previous studies on federated and digital twins in the
manufacturing sector with two or more location-sensitive twins sharing data to enable a synchronized
view of the operations. The federation in our case is not only a tracking mechanism, but also participates
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in the training of the RL agents: the act of a given agent is actualised in its respective twin, and the
results of them the output of them, including agents through these inter-twin messages.

Reset and Episodes In the event of the RL training, episodes are typically simulated. A certain time
horizon (e.g. one year of operation) may be synonymous with one episode. We provide an initial state
of the simulation (e.g. all the inventories are at a certain level,system is in equilibrium) and run the
system as decision-making process is performed by the agent at each period. The measurement of the
performance is captured after the episode and the simulation can be potentially recovered (with possibly
varying random seeds of probabilistic phenomena, or even changing parameter values to reduce the
strength of a policy). The digital twin ecosystem as such provides the RL agent with a platform to learn
and one that is repeatable, controlled, and risk and cost-free to the actual supply chain.

Precision and Fineness: We ensure that the digital twin is sufficiently elaborate enough to characterize
those dynamics that define sustainability. An example will be inventory age (where the product is a
perishable good, but there is none restriction), transportation types (different emissions), and energy
usage of warehousing (required electricity to preserve the product refrigerated when needed). But then
also we take abroad that vastly refined-grain stuff which actually exercises the learning. Abstraction
identifies the level of state space and the actions space that needs to be handled in a way that would be
manageable by the DRL agent. An example we can sum up the demands per day rather than the
transactions per customer and we introduce a limit of frequency of actions (e.g. we can make an order
once a day rather than all the time). This ratio of simulation-realism-simplicity is modified during the
pre-testing of the simulation.

2.3 Deep Reinforcement Learning Algorithm

The problem environment is defined through the use of digital twins and thus, with the problem
environment laid down, we characterize the deep reinforcement learning methodology of the individual
supply chain agents. We have multi-agent case, however, with our federated learning (Section 2.4), we
will consider the learning process of one agent first, and afterward, will discuss how the learning
processes of multiple agents can be synchronized. The potential RL algorithms that we might use
include a variety of Q-learning, Policy Gradient, Actor-Critic and others. On the reason why we have
decided to take a modern actor-critic algorithm is because it is more stable and can operate in
continuous action space. Specifically, we used a variant of Deep Deterministic Policy Gradient (DDPG)
to control continuous actions and also tried the Soft Actor-Critic (SAC) which explores better with the
aid of the entropy regularization. Adaptive entropy coefficient (temperature) was found to be a good
SAC to use, which is consistent with techniques in recent inventory management DRL studies. The
general version of the algorithm is provided below:

The agents are represented by the policy network of agent i, i.e., policy network, icon, and value
network (critic). The policy network gives the state an action (or parameters of a stochastic action
distribution). The critic approximates the Q-value (expected payoff) of pairs of states-actions. The two
networks are both depicted using deep neural networks (e.g., multi-layer perceptrons with ReLU
activation), taking parameters F i and w 1 respectively.

The agent engages with its digital twin environment and gets experiences in form of (sti, ati, rt i, s{t+1}
i). These are buffered in a replay buffer (in off-policy learning algorithms, such as DDPG/SAC).

The critic network is trained using the Temporal-Difference error minimization. In Q-learning style
update we minimize the loss:

2

Lw) = E(sars)-p || Qw;(s,@) — (r +y (4)

caTy% )
! I 41
a’'Qw, (s",a")

where D is the replay buffer distribution and Q\te¥t{target} ig a target network (a delayed copy of the
critic to stabilize training). In actor-critic methods like DDPG/SAC, the target action a’ is given by the
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actor (target actor for stability). SAC uses a slightly different update with entropy terms, but the concept
is similar: the critic learns to evaluate the current policy’s outcomes.

Policy gradient updates the actor network in order to maximize the expected Q- value of the actions it
chooses.

The deterministic policy (DDPG):
Vo) (6) = Ex-p [ 7o,0,(5) VaQu, (5 @la=ny o] )

where adjustment in the policy parameters of the direction which raises the Q-value according to the
critic is denoted. Practically this gradient is calculated using back propagation using the combined
network of actors and critics. In the case of SAC (stochastic policy), there is an entropy term that is
used to promote exploration.

We also embrace the improvements such as adaptive learning rates and adaptive entropy coefficients
(in SAC) to enhance learning stability in non-stationary supply chain system. In the adaptive entropy
coefficient, the amount of exploration (randomness) to be employed by the policy is automatically
adjusted - intuitively, when the environment seems uncertain, the policy should explore using more
exploration and when the environment seems stable, the policy must explore using less exploration to
fine-tune on the optimal policy, - needs to be reduced. This would aid our case especially since there
are times a supply chain demand patterns can change (there is a need to explore new strategies) but in
the constant times the agent needs to utilize the learned good policy.

All the agents are trained by sampling mini-batches in its replay memory and updating its networks
based on the selected RL algorithm. Such common tricks as target networks (slow- moving averages
of the main networks) to enhance training stability, and batch normalization to deal with varying scales
of inputs (e.g., inventory levels can be dozens and monetary money costs can be thousands) are used.

In a single-agent case, such training would be carried out until convergence (e.g. the average reward
levels off). With no coordination between agents in a multi-agent problem, it would be possible to model
as either completely independent (each agent is maximizing its own reward (which in our case is related
to local cost/emission)) agents or a joint optimization (in a multi-agent problem, there would be a
common reward). We are inclined to an independent learning agent paradigm of shared global goals,
i.e. each agent has self-interest in minimizing its cost +emission, but because the metrics are agent-
specific and the coupling is either by shared environment dynamics, better local policy should improve
global outcome. This study did not clearly apply a centralized critic (although this is an extension
method - a central critic with decentral execution could be employed as long as there is communication
to a central critic to appraise the world state), but this would be a very natural extension of this study.
Rather, we are using the federated learning mechanism to exchange our learnings which we outline
below.

2.4 Federated Learning Implementation.

Federated RL motivation Federated RL has a number of issues in case each agent separately trains (only
using its own experience). Smaller agents (e.g. a small retailer and limited data) may be a poor learner
because there is not enough experience or because its immediate surroundings is more stochastic. In
addition, local optimization would be globally suboptimal - an example is a warehouse that will increase
the inventory cost of the warehouse which unintentionally leads to more stockout in retail and, as a
result, it results in an increased cost of lost sales in the system. In our strategy, we would train the agents
to learn a coordinated policy to the advantage and improvement of the supply chain as cohort whole and
by means of learning their model parameters, in a federated way. The thought process is to set the neural
networks of the agents periodically to ensure that they come to a shared policy that incorporates the
knowledge of the entire supply chain. No exchange of raw data takes place: only model parameters
(weights of neural networks) or update of parameters (gradients) are exchanged.
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1. Federation Learner Process: Our standard federated averaging process (also known as FedAvg).
The technology works in communication round shifts facilitated by a central server (which may
be a neutral or one of the companies acting as such). One federated learning round will follow the
following process:

2. Broadcast Global Model: The central server has a worldwide variant of the model (at first, this
might simply be a duplicate of one of the models of an agent or an arbitrarily initialized model).
The server transmits the prevailing global model parameters, denoted by 0: math and relates these
parameters to all the agents (or the agents chosen by the round) at the beginning of a round.

3. Local Training: Every agent i is provided with the global model parameters and trains its local
model (actor and critic networks) to the global model parameters. It then proceeds to train on its
local digital twin surroundings on a specific number of steps/epochs utilizing its own
data/experience. In this local training, the agent could execute multiple instances of simulation and
carry out gradient updates as presented in Section 2.3. Where the change in actor weights (and
critic weight) during the local training can be denoted by delta thetas i and correspondingly delta
w 1. or just the resultant updated weights after training are denoted by Thetai new.

4. Upload Updates: Agent i uploads to the server a weight change, or the resultant weight difference,
to the server: In most applications, it is the new model weights that are transmitted (that is simpler
to implement, as the server can always compute differences in case they are required). Notably,
there are no raw data (states, actions, rewards, in the simulation) exchanged, just obtained
parameters, which are numerical values not providing a direct insight into the data behind them.

5. Aggregate: The central server consolidates the updates that have been received by all agents to
create a new global model of the form of 8(t + 1). The most popular one is a weighted average:

N

1
9(t+1) — Nz Oinew (6)

i=1

making the assumption that all the agents are alike and that there were N agents in the participants.
In case the agents are going to have varying datasets sizes or durations of simulation, a weighted
average can be taken depending on the number of training samples per agent. Equal weighting
does make sense in our case, as all the agents simulate the same duration per round. FedAvg This
algorithm is a simple model parameter fusion, which is equation (ref:fedavg).

6. Repeat: In the global model, it can now hopefully become better having knowledge added by all
the agents. It can subsequently be broadcasted by the server to the agents in the following round
of local training. This is done iteratively, in accordance to a set number of rounds or when the
model performance is converged.

By this we must think that we are dealing with both the networks of actors and networks of critics. We
federate average parameters of the actor networks mainly, since the actor (policy) is what we eventually
desire to be common (so that all the agents should adhere to a common policy which optimizes the
objective on a global basis). There is a possibility to average the critic networks which estimate the
value functions but because the critics will estimate the local value-functions (which can vary in scale
or dynamics) it may not make sense to average them. Approaches in the literature of federated RL that
only share the actor (policy) retain critic (local) are also possible, as well as approaches that share both.
In our experiments we decided to exchange the networks of actors between the agents and each agent
was permitted to have its own critic network which it trains on its local experiences. The intuition is
that a unanimity in the policy is desirable (then all the agents are effectively implementing the same
strategy), but the critic of each agent can be a specialist in assessing how good a policy is in its context
- this is responsive to non-i.i.d. conditions like one location has more demand variance than the other.
Instead it might have a global critic in case the state and reward were global, except that in our design,
the reward is in part local. In this manner the actor (so as to create a global policy m4) and not the critic
are federated.
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We observe that this is not such a theoretical way of maximizing the global objective, but it is an
empirical heuristic. Practically, we have seen that federated actor approach results in all agents
subscribing to identical policies and further enhancing such policies as the level of diversity is taken
advantage of. Intuitively, the digital twin on behalf of one agent may experience a situation (such as a
sudden demand) and may choose to respond to it (by uses of safety stock), and by federated averaging
the response to this situation was adopted as a part of the global policy that will be used by other agents
initiating a surge of demand in the future. We are looking for this very process of knowledge transfer.

Privacy Considerations: In our federated learning, the weights of the neural network are the information
to which privacy is a consideration. May those tell anything delicate? However, as it has been
demonstrated by modern research, in certain cases model weights can be used to leak information about
training data (via model inversion, and so on). Such risks are, however, typically far less than the direct
sharing of the data, and such methods as differentials or secure aggregation can be used to cope with
these. We have a simple trust in the aggregator and do not apply higher security levels of noise in the
research, with their theoretical advantages initial. In a deployment, it is possible to add noise to the
weight updates (differentially private FL) and compromise a bit of accuracy. The other assumption is
that agents share same model architecture- we come up with policy network structure, which is common
to all agents. It makes sense because we make certain that both the state and the action space of each
agent are being the same in their structure (the values may vary though). To consider an example, when
the demand of a particular retail store normally falls on a range of (0,100) and the other falls on a range
of (0,200), we normalize inputs such that the same neural network can deal with them.

Algorithm Summary: Pseudocode for the integrated federated deep RL could be outlined as:

Initialize global actor weights Theta(®) randomly
For each agent i=1...N: initialize actor Theta_i = Theta(®@), critic weights w_i
randomly
For round t = © to T_rounds:
Broadcast Theta(t) to all agents
For each agent i (in parallel):
Initialize simulation (digital twin) for a new training episode (or set of
episodes)
For k = 1 to K (training iterations per round):
Sample current state s from twin (or replay buffer)
Select action a = pi_{Theta_i}(s) + exploration_noise
Execute a in digital twin, observe reward r and next state s’
Store (s,a,r,s') in replay memory
Sample minibatch from replay memory
Update critic w_i by one step of gradient descent on Eq (3) or SAC loss
Update actor Theta_i by one step of gradient ascent on Eq (4) using the
critic w_i
End for
Send updated Theta_i (or the delta from Theta(t)) to server
Server: Aggregate Theta_i from all i using Eq (5) to obtain Theta(t+1)
End for
Output: Learned global policy parameters Theta(T_rounds)

In our implementation, we found that performing a few episodes of local training (e.g., each agent runs
simulation for 10 episodes with 200 time steps each, doing gradient updates throughout) per round, and
then averaging, worked well to steadily improve the global policy.

Convergence and Termination: We keep track of the training process by following the worldwide goal
(accumulated reward/cost/emissions) per episode. The federated learning is repeated until the
progresses even out. Since RL is noisy in nature, we apply an average of the reward of the preceding
episodes, which are smooth to terminate. We also performed fixed rounds of the training (such as 100)
in experiments which converged in our case (this can be calculated through trial). It should be mentioned
that convergence in federated multi-agent RL is not a theoretical certainty, however empirically we
found a stable learning. The convergence or oscillation that federated averaging is prone to would be

105



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 97-121

prevented by the combination of the mechanism of exploration and the federated averaging in the
SAC/DDPG in order to prevent the agents.

Baseline Comparisons: We will provide baseline comparisons as part of methodology: (a) Non-
federated (isolated) learning: here each agent learns an RL policy without sharing with any other - this
will demonstrate the advantage of federation. (b) Centralized learning: we assume that we operate as a
theoretical ideal in which all data is accessible to a central agent (i.e. a single RL agent which observes
the full state of the world and the full reward). This is not feasible but it acts as an upper limit to
performance. This we estimate, by training a single agent on an approximation of the entire supply chain
with global reward (aggregating costs and emissions). (c) Rule-based heuristics or optimization: such
traditional supply chain policies as Order-Up-To level inventory control, or a shortsighted cost
minimization per period, or fixed safety stock levels. These provide a point of departure of practice. The
example of a simple heuristic would be a (r,Q) (reorder point, order quantity) policy that is adjusted to
attain a given service level. Such policies we implement are applied with the help of standard formulas
(newsvendor for stocking, etc.) to confront the results. The innovative aspect of the methods here is
mainly (a) the combination of those three elements (DT, RL, FL) and (b) developing the learning
problem in such a way that it can have sustainability measures. The above equations and the algorithm
is the blue print, which we will realise in the experiment set-up.

2.5 Complexities and Statistical Analysis.

The supply chain performance and the behavior of the learning algorithm are stochastic because the
demand is unpredictable along with other uncertainties. In order to make significant conclusions, we
use statistical analysis of the results. In every experiment (configuration of a method and a scenario),
we execute a great number of simulation replications (in the order of 30 or more) with various random
number seeds. This gives an instance of performance measures (e.g., overall cost, overall emissions per
replication). We just compute sample means and variance and also rely on confidence interval to
evaluate the reliability of improvements.

To illustrate, when the mean number of costs of the supply chain is denoted by the mean cost of the
supply chain under our federated DRL policy as in: Z bar FEDRL and the same under the baseline policy
as Z bar, then we make hypothesis tests like:

Ho: Z reart, = Z pasetiner  Ha'Z Feart < Z Baseline @)

because we will have low cost with our process. The p-value of the difference between the means will
be determined using either a two-sample t-test (when the variances are identical) or Welch t-test (when
the variances are uneven). Likewise, in the case of emissions we perform a test of significance to reduce.
Likewise the p-values were all less than 0.01, which proved that improvements were statistically
significant - these findings will be presented in Section 3.

We also examine the stability of results to remark on the resilience: e.g. that our policy on RL does not
just change averages, but also does not increase the variance of cost (which might be associated with
predictable, healthier operations). We also adopt ANOVA to understand whether our performance
outputs are highly sensitive to some of the factors (such as the value of the parameter a or the number
of federated clients) that would indicate that the system is sensitive in nature to these aspects.
Mathematically, it is computationally expensive to train a deep RL that uses federated rounds. To
monitor the convergence of the global model, we instrument the training process to capture the loss
curves of the critic and actor, and monitor convergence. We make sure that sufficient rounds of execution
are done to the extent that the learning curve will starts approaching zero, which denotes convergence
of policies at a near-degree.

The equations that may be applicable in this case will involve the equations of calculating the confidence
interval. As an example, if the average cost with a policy is established to be:

_ s
Z ttoo75,n-1—= 3

Vn
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and the number of replications is denoted by n, and the standard deviation of the sample is denoted by
s. This is to assert dominance where we also make sure that our method and baselines do not overlap
confidence intervals of key measures. Lastly, to make sure that we did not fit the specific demand pattern
we would vary the demand-distribution between different training instances (some have high volatility,
some have trend) and see what the learned policy achieves. The fact that it is federated is in fact useful
in facilitating generalization since the individual agents may have slightly different demand patterns so
the aggregate policy is resistant to diverse conditions (similar to data augmentation during training). In
short, the federation of a deep RL algorithm to a digital twin system and strict statistical assessment
framework to prove the outcomes are the features of our methodology. Then, we come to results and
discussion section where we focus on the results of application of this methodology and discuss its
implications.

3. Results

The results of the experiment that we introduce apply to the simulated supply chain by implementing
the proposed digital twin-enabled federated deep reinforcement learning framework. We then present
the experimental setup of the chain of supply chain with the scenario, parameters, and the baseline
strategies on which it would be compared. We then provide the results of the performance, both the
economic (cost) and the environmental (emissions). We also present several tables with the summary of
the important findings: Table 1 is a comparison of our approach with the baselines in relation to cost
and emission reduction, Table 2 is the study of the influence of the change of the sustainability weight
(a weight) on the resultant trade-offs, Table 3 is the investigation of the role played by the federated
learning component, i.e. the comparison between the federated and the non-federated training.
Statistical significance indicators are provided with all the results. Lastly, we talk about the lessons
learned on the basis of these findings and include how the federated DRA policy realizes such gains,
what patterns it is capitalizing upon, and what they mean to managers in terms of sustainability of supply
chain coordination.

3.1 Experimental Setup

Supply Chain Model: We model a three-echelon supply chain based on an FMCG distribution network.
It has one manufacturing facility, two central distribution centers (DCs), and four distribution retail
outlets (serviced by each DC). This network takes the form of an archetypical network with a factory
distribution to regional warehouses which, in turn, distribute to the local stores. The good in question is
one representative good (it can be extended to a number of products but one commodity is used here to
have a clear picture of the item in question). The demand in every retail outlet is unpredictable and it
takes place on a daily basis. Namely, the daily demand of retail is a random variable with the average
value of 100 units/day and the standard deviation of 20 (moderate variability), and it is (set) at 0 (no
negative demand). The demand of outlets in the same region is also correlated to reproduce the regional
demand shock (we scale demand variation in the stores under the same DC by 0.3 it is managed in the
simulation environment).

Day to day managing of inventory is conducted in every stocking point (factory, DCs, retailers). Its
production capacity is 500 units/day with the production lead time of 1 day (production that starts now
is completed a day later). The lead time of DCs originating at the factory is 2 days to the replenishment
after the concluding production stage. The lead time of the retailers is 1 day based on their serving DC.
These lead times are stochastic: we model transportation delays whose variation is within the range of
plus or minus 1 day (e.g., the lead time of a DC is a 1-day lead time with probability 0.2, a 2-day lead
time with probability 0.6 and a 3-day lead time with probability 0.2). The associated costs are production
cost at factory, inventory holding cost, backorder/stockout penalty, and transportation cost: the former
is the cost of production, which will be one per unit cost of production including the cost of raw material,
and the latter two are: inventory cost of holding at the factory, will be: inventory holding cost per unit
in one day, which will be: 0.2, and the backorder/stockout penalty will be: cost of not producing cost
will be 5 per unit. The distance between factory and each DC is 200 km, distance between each DC and
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stores is 50 km, which we assume is full truckload shipments with cost per unit being constant in regard
to such distances.

The calculation of these emissions is as follows: one unit of production uses 0.1 kg CO; (this has the
potential of capturing the energy consumed in the production process), one unit of transport emits
0.0002 kg CO 2 per unit per km, and inventory storage emits none at all (we can assume that
refrigeration etc. used in storage only results in a minor emission but neglects this factor). Therefore,
transporting a unit in a factory to a store (250 km in total) has an amount of CO 2 of about 0.05 kg.
These figures are not very large in themselves, but thousands of units day by day will increase them.
We want to observe improvement of these in terms of coordination (e.g. not to have emergency
shipments or unnecessary overproduction).

Agent Decisions: The RL agents take the decisions regarding the inventory replenishment at each stage.
In particular: the number of units to be produced by the factory per day (within capacity) is determined
by the agent of this factory; the number of units to be ordered per day by the agent of this DC (or, in
other words, the number of units to release to ship given orders) is determined by the agent of this
factory; the number of units to be ordered per day by the agent of this retail is determined by the agent
of this factory. These we model as a series of successive actions (that are going to be integers in the
simulation). We constrained the actions in 0 to some reasonable upper limit (e.g. 300 units retail, 600
DC, to eliminate extreme orders). All the agents have the same policy network through federated
learning, conceptually they all it can be thought of as having an agent at each location which makes the
order decision at the end of each day based on the state it has observed.

State Observations: Each agent has a state at a given point of time (decision epoch (daily)) which
consists of the current inventory levels at that point, the inventory available on order (pipeline) not yet
arrived, the latest observed demand (assists agent in estimating trends), and time of the day (we would
add day- of-week terms were there seasonality effects at the period; we did not add seasonality though
so time is trivial). In case of DC and factory agents, a combination of downstream demands or inventory
positions are added to state in the event that it is available. The experimental design in our experiment
was to have an agent of the DC monitor the sum piece inventory at its two retailers (provided that
information sharing is through the digital twin federation), and a peer of the factory monitors the sum
piece inventory at the two DCs. This is a good way of providing the agent with an impression of stock
distribution within the supply chain.

DRL Model Architecture: Our actor and critic are based on a two-layer neural network. Each hidden
layer has 64 neurons with ReLU activation, and the output of the actor network is an action (which is
normalized by a sigmoid layer to be between 0 and 1, then multiplied by themax order quantity) the
actor network. Networks used to search the critic receive state-action concatenated as input, and the
network is equal in size (64-64 neurons) and outputs a Q-value. We have used Soft Actor-Critic (SAC)
algorithm including automatically tuned entropy. It was 0.1 in the initial entropy temperature and was
switched in course of training. Both the actor and critic optimizer used learning rates of 5 x 10 4 on both
sides, and a batch size of 256 was taken. The local training took place on one simulated day; we put our
gradient update on a daily basis (which is equally typical 1:1 ratio in SAC). The size of the replay buffer
of each agent was 10,000 (thus has approximately 3 years of previous experience, which is long enough
to be highly diverse).

Federated Learning Set-up: We also ran federated averaging after every simulated day of R=50.
Precisely, every agent would numerically simulate 50 days (likely 7 weeks of operations) and update its
networks throughout these timeframes; and afterward the model weights would be pooled together
according to the agents. An excessively regular aggregation will make convergence too slow: excessive
aggregation will cause models to drift away. Trading off on 50-day intervals worked out well with us.
Federated updates were done on all the 7 agents (1 factory, 2 DCs, 4 retailers) (i.e. N=7 in Eq. (5)). They
were averaged with the same weight unless we tried weighting based on data points which in this case
are equal (50 days each) so as to be effectively equal. Our training covered 200 rounds of federation,
10,000 days, of training days per agent. This sufficed the convergence of the global policy as was seen
through the leveling of the reward curves at round about 150.
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Baseline Policies: We ablate against two baselines (1) a Non-Federated Deep RL baseline - we use self-
contained SAC agents to train each node using identical neural architecture and simulation parameters,
not sharing any weights. This baseline separates the value of federated learning. This enabled fair
convergence by training these agents themselves of 10,000 days. (2) a Conventional Order-Up-To
(OUT) policy - policy with heuristic based inventory control strategy that is mostly practiced. The
workings of an OUT policy are as follows: each day, out of each place, the maximum quantity of orders
placed is Hamer This amount is determined by the demand in the future (up to a specified maximum
lead process) plus stocking level. The levels of optimization of the S at every location were performed
through simulation (to reduce the cost under service level constraint of approximately 95%). This
basically was an estimate of the optimum obtainable under a conventional policy with our specified
costs and demands. This is where the no learning and human-designed strategy exist.

Another benchmark that we also evaluate is a Centralized RL benchmark: we learn a single SAC agent
that looks at the state of the supply chain (all inventories) and then controls all of 7 order quantities
simultaneously. This agent possessed an action dimension which was far greater (7) and we rewarded it
globally (negative total cost+emission). It is not a realistic case, but puts an upper limit - it is like one
central planner dictates everything and has all the information. This assists one to observe how near
federated is to this ideal.

3.2 Compensation of Performance against Baselines.

Our Digital Twin Federated DRL (DT-FedDRL) method reports the final results of our methodology to
the baseline methods in the first place. There are two main metrics in terms of which the performance
is assessed, Total Annual Cost (TAC, in ) and Annual Carbon Emissions (ACE, in kg CO,), calculated
on the whole supply chain. These findings are presented in Table 1 as the average of 30 simulation runs
(each of them corresponds to one year of simulation operations post-training). Standard deviations are
indicated in brackets and those that are significantly better (95%) highlighted.

Table 1. Supply chain cost and emissions under different approaches (mean + std dev)

Policy Total Annual Cost  Annual Emissions Cost Reduction vs. Emission Reduction
(\%) (kg CO») OouT vs. OUT

Order-Up-To \$1,587,000 82,300 kg (£500) - -

(OUT) (#+4,500)

Non-Federated \$1,480,700 77,250 kg (£620) 6.7% 6.1%

DRL (£5,100)

Centralized RL \$1,345,200 70,100 kg (+£550) 15.3% 14.8%

(ideal) (+4,800)

FedDRL (ours) \$1,369,500 72,500 kg (£580) 13.7% 11.9%
(+4,950)

(Note: Cost includes production, inventory, transport, and stockout costs. Emissions include production
and transport CO.. Reductions are relative to baseline OUT policy. Bold indicates statistically
significant improvement over OUT at 95% confidence.)

From Table 1, we observe several important points:

The traditional OUT policy leads to overall cost of approximately 1.587 million a year and a carbon
emission of approximately 82.3k kg CO,. This policy was adjusted to obtain a high level of service of
about 95 (backorder cost made sure of high service) and the outcome is that the level of inventory is
huge and the replenishments frequent - therefore greater holding costs and transport consumption (and
emissions).

The non-federated DRL agents are more effective than the OUT as they save costs of about 6.7% and
are able to reduce emissions by about 6.1. This implies that, even in the case of decentralized learning
(which can adapt the ordering policies to the real demand patterns and does not perpetrate overstock or
understock), the improvement can be had. To illustrate, the learned agents learned to issue more
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conservative orders during periods of low variance in the demand and to be more aggressive during
periods of an expected surge instead of a single safety stock. The reduction in emissions is due to the
fact that fewer emergency shipments (express deliveries modeled as high cost and high-emission events
in case of stockouts) took place, and there was a more even distribution of inventory (elevated overstock
levels that had to be redistributed as a rush order, etc). These changes are statistically significant ( p <
0.01). Nonetheless, it is still a long way to the centralized RL optimum.

As is expected, the best performance is demonstrated by the centralized RL (ideal case). It emits only
15.3 per cent less and 14.8 per cent less than OUT. This equilibrium agent basically co-ordinates the
orders optimally: it has learnt to make the optimal quantities in time which will supply retail demand
with a right amount of inventory and also distributes stock across DCs to avoid imbalance. It
successfully removes most of the stockouts (backorder costs which is in this case had virtually become
close to zero) and fails to overstocking. The emissions decrease unfortunately alongside the cost since
in this model, the cost and the emissions are slightly in agreement (the transport and production mainly
emit and cost is involved as well). The centralized solution is a high benchmark - it presupposes
complete visibility and regulating. Such high returns are encouraging, and this fact proves that there is
much to be desired when it comes to improved coordinated supply chain control.

Compared to OUT, our FedDRL strategy resulted in a reduction of nearly 13.7 and 11.9 in cost and
emission respectively. This is barely worse than the reductions of the centralized RL. Comparing to the
centralized RL cost, FedDRL was virtually 1.8 percent more expensive and the emissions were nearly
3.4 percent more. The difference is under two standard deviations, suggesting the performance of
FedDRL is substantially similar to the one of a centralized case (we incorporated t-tests: difference in
cost between FedDRL and Centralized RL had p=0.08, which is not significant according to the 95%
significance but significant according to the 92% significance; in the case of emissions, p=0.03, almost
significant). This implies that federated learning was effective in deriving close-to-centralized quality
with respect to optimization although individual agents did not provide raw data. The federated scheme
enabled the group of agents to estimate the actions of a monolithic maximizer.

When FedDRL is compared to non-federated DRL, the cost of the model is 1.3695M vs 1.4807M (that
is, about 7.5% lower than the independent learning did) and 72.5k vs 77.25kg kg CO; (7.5% less is also
saved there). The difference in these is significant (p<<0.01). This proves that the idea of learning by
exchanging knowledge through federating averaging enhanced the learning of superior policies that no
one of the individual agents could have attained individually. In the non-federated scenario there was
no way of agents realigning their policies or thinking about system level interaction - such as each
agents agent would be selfish without understanding that being a little over-ordered at the factory leads
to bullwhip effects. Since these experiences of the factory and those of the DCs are mixed into a single
policy in the federated case, some of such interactions are implicitly integrated into the resulting policy.

Table 1, in short, shows that the proposed federated DRL is expected to provide significant cost saving
and sustainability result indicators. Being able to attain cost savings of about 13.7 to the supply chain is
highly important in practice (that may imply hundreds of thousands of dollars to a mid-sized network
as it was simulated). Equally, a 12 percent decrease in carbon emissions would push the needles on the
corporate sustainability interests (e.g., pinpointing that a firm has set the 10 percent decrease in carbon
emissions in supply chain operations, using this technology by itself would enable the fulfillment of a
large portion of the aim).
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Figure 1: The following Log-convergence Curve indicates dynamics and stability of the suggested
framework. The federated DRA curve reaches the convergers at a rapid and smooth, on a log scale,
making it nearly close to the centralized benchmark RL but significantly more superior to non-federated
learning. The exponential progress of the global objective in the beginning of the rounds and reduction
of variability in the later ones (log-scale separation) is a sign of stable policy improvement. The smaller
convergence band suggests statistically lower variance in the different runs as the report of the
significant performance improvements (p < 0.01) and the establishment of strong and non-oscillatory
learning at federated aggregation.
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Figure 2: This Stem and Leaf Pattern represents the whole pattern of total annual cost distribution
instead of mean values that are repeated on cases of simulations. Clearly, the federated DRA distribution
is shifted to the left compared to the Order-Up-To and non-federated DRA versions, and the distribution
has more small standard deviation and fewer high-cost outliers. Such a tightening of the spread is a
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positive sign of enhancing the strength and predictability of the consequences of operations. The
statistical analysis of the distribution separation supports the high percentage of reduction in the mean
cost and variance and confirms the fact that the improvement is not made by single beneficial
occurrences but a regular systemic phenomenon. In order to confirm that these advancements are not
achievement of these gains comes at the cost of service, filling rate (percent portion of the demand met
without backorder) was also noted. The fill rate in both Centralized RL and FedDRL was around 98%
as compared to the 95% target fill rate on the design of the OUT policy. Non-federated DRL had ~96%.
Thus all learning agents in real fact did make service better and costs lower - a sign that they were
making costs lower not by mean of cutting inventory too low (that would have damaged service but of
smarter inventory positioning and timely replenishment.

Policy Characteristics: Thus, Inspecting the learned policy, we observed some of the intuitive behaviors:
The learned FedDRL policy provides a sort of a state-dependent ordering: e.g. when the inventory of a
DC is adequate, and its downstream sales are typical, it orders as less than the OUT level (saving holding
cost), but when high levels of a retail sale are observed, it will quickly respond by ordering more in the
subsequent day to pre-empt the stockout. Conventional OUT of constant S can not respond on recent
modifications as fast. The agents had a scheduled timing of the orders to merge deliveries. We also saw
that in FedDRL the factory usually will wait an additional day to fill the order of the two DCs (fill a
truck) instead of producing small orders on a daily basis and filling DCs. This minimized frequency of
transport - hence cost and emission- at a low inventory cost. This new behaviour was not specifically
coded but it occurred as a result of trade-off cost/emission in the reward. - It was lowered through
reduced emission due to out of shipments (the OUT baseline was sometimes forced to rush shipments
due to stockouts which in our model was modeled as a high-emission air transport to deliver rush orders;
RL learned not to reach that critical situation again). Secondly, overtime production that was more
carbon-intensive was not necessary in the RL agents (this was indirectly modeled as overtime was more
expensive and likely to use more energy).

3.3 Sensitivity of Sustainability weight to the weight

An important parameter in our strategy will be the value of A spends practically on the significant value
of emission reduction in the reward function (Eq. (1)). Up to now, Table 1 results were given at a given
value of the lambda, which we arbitrarily selected (we selected the value of 50 per ton CO,, which is
around 0.05 per kg, which is similar to several internal carbon pricing programs). An agent will
otherwise maximize cost when the value of A=0; he will maximize emission reductions at a high cost
when the value of a cost is very high.
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—
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Figure 3: The waterfall decomposition depicts the origin of the gains in performance. A steady decrease
of inventory holding and stockout penalty, transportation inefficiency and production smoothing has
cumulative effects in decreasing the baseline to the federated DRL outcome. This defines mechanistic
validity which correlates algorithmic learning with tangible supply chain levers. The negative
monotonic contribution of each is consistent with statistically significant decreases in every specific
component of the cost showing that global improvement is the sum of individual independent and
significant operational efficiencies.

To find the outcome variations with various settings of the parameter of the form, Table 2 was prepared.
We tried lambda in the following values: 0, 20, 50, 100 (in in dollars per ton of C02). These are the
situations of no action regarding carbon and the situation of severe punishment. Each of the Federated
DRL agents was re-trained (to convergence) and their performance assessed, in response to each of the
tritiums of lambda.

Table 2. Impact of sustainability weight A on cost and emission outcomes (FedDRL policy)

A (cost of CO») Total Cost (\$)  Emissions (kg % Cost A vs 1=0 % Emission Avs 4 0
CO)

0 (ignore emissions)  \$1,345,000 74,800 - -

20 (low weight) \$1,352,200 73,100 +0.5% -2.3%

50 (moderate, \$1,369,500 72,500 +1.8% -3.1%

default)

100 (high weight) \$1,410,000 69,400 +4.8% -7.2%

Note: FedDRL post-training evaluation given the administration of specific value of lambda. USD per 1000 kg CO- (ton).

Table 2 Interpretation: In the case that the agent has a =0, then the agent is economically efficient and
does not care about the emission. We observe the lowest possible cost achieved (approximately, 1.345M,
interestingly, it is similar to the centralized RL cost above) but the emissions are only 74,800 kg. That
coming will be less than the 82,300 kg of the OUT-base emission since most of the cost-saving activities
also cut down emissions. But in the absence of a carbon cost the agent will opt to pick an option which
is cheaper but dirtier in case it exists. One example of such a trade-off in our model was expedited
shipping: in that case, when we eliminate the carbon penalty, sometimes the policy employs a little more
of the fast transport to avoid the cost of possible backorder, a bit of which increases the emissions. - The
larger the value of the parameter, the greater the amount of the policy changes to the low cost of the
emission. An example is the increase in cost by a percentage of about 1.8 at the same time the emission
decreased by a percentage of approximately 3.1. The cost at the high price of carbon one hundred dollars
per ton, in other words, the price at 100, is slightly high by about 4.8 percent of the pure cost-optimal,
although the emissions are considerably less, at 72 percent. This means that a large carbon tax will not
reduce the emissions more, the cost will begin rising at a steeper rate. The dynamics involved do not
provide the association between carbon price and reducing emissions but overall we notice that a
medium carbon price (50) would carry out the majority of the emission cuts with minimum cost
consumption, and that a very higher cost carbon price (100) would decrease the emissions yet with an
enormous cost. We mostly used the case of the lambda=50 which seems to be a good balance between
the two objectives. The current emissions stand at 72.5k, approximately 11.9% below the baseline
(Table 1) and the cost was at 13.7% below the baseline. At a September 9.8k kg CO, reduction with a
value of, say, of 250/ton, it will save about 250 at about 490 at a small increase in actual cost versus(0.02
lower case of the societal cost than at September 0.02. That is, at an internal price of a carbon of 50/ton,
the supply chain will have it actually spend 24.5k to avoid approximately 2.3 tons of CO, (applying a
marginal abatement of 1/10.65k, which is not cost-effective in most cases but at the regulatory or
corporate compulsion may work). It costs it an extra 65k to abate about 5.4 tons (which costs it around
12k a ton) at the 100 th wavelength. - The point here is that through varied choice of a specific factor,
the so-called lambda, the managers are able to control the learned policy along a Pareto frontier of costs
versus emissions. In case sustainability is a consideration, setting a high value of the value in the form
of the parameter that produces a strong reduction in emissions, compared to cost minimization would
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result, at a certain cost. When cost is king, you can set a low or zero cost of the performance and with a
bit of efficiency, still achieve some emission reduction as it happens to be the side-effect.

There were some interesting differences in the policies at greater values of the parameter, e.g., at the
value of 100 the policy resulted in higher inventory levels on average (to prevent stockouts and thus
prevent emergency production or shipping which were highly emitting). It also preferred routing to a
greater rotation by some ground transportation over periodic usage of air freight (but not at the cost of
accepting a stockout once) even though it was costly, but reduced inventory emissions. Thus was a very
green policy content to accept a few customer orders not being met instead of flying - since our 4 =100
would have been national in either case strongly penalizing the air freight costs. The question that that
is acceptable or not is dependent on the priorities of a company; it shows the strength of RL to identify
non-intuitive strategies with various weights in objectives.

To investigate how the suggested federated deep reinforcement learning framework is sensitive to the
sustainability prioritization, a l-variation experiment has been carried out by the systematic variation of
the emission penalty weight in the reward function. It was tested in various 1 conditions that represent
cost dominant, balanced and sustainability dominant regime keeping other training and operational
parameters constant. In successive simulations with growing 1, the amount of carbon emitted decreased
steadily and monotonically, and the overall cost increased predictably, which indicated a predictable
and recognizable trade-off than policy change on a fluctuating basis. The comparison of the outcomes
in a statistical comparison between the 1 settings found that significant differences among the costs and
the environmental outcomes were in place (p < 0.05), with no substantial intermingling in the
performance distributions, which allowed concluding that 1 is an effective and viable control parameter.
The outcomes affirm the capability of the framework to manoeuvre the economic-environmental Pareto
frontier in a principled and tunable way, which adds to the suitability of the framework in the
sustainability-conscious decision-making related to supply chain.

1.42 4

1.40 1

1.38 A

Total Cost (Million USD)

1.36 1 ‘
1.34 A ‘

0 20 50 100
Sustainability Weight A

Figure 4: This candlestick trade- off chart demonstrates the multivariate cost-emission trade-off
assuming different weights of sustainability (1). As is indicated by candlestick envelopes, federated DRA
clearly has stringent performance limits even though the central tendency moves to lower emissions
with an increase in 1. The fact that ranges have been widening under control means controlled risk and
not instability. The fact that the regular movement of medians with little overlap in 1 values are
statistically supported documents that a significant and controllable policy reaction is present and that
the framework can be relied upon to guide profitable and economic-environmental Pareto frontier
navigation, as opposed to inconsistent and uninformed trade-offs.
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3.4 Federated Learning and Collaboration Role.

In order to confound the confounding variable of the federated learning mechanism, we perform an
analysis on collaboration and independent training. We already had a comparative study between
Federated vs Non-federated DRL in Table 1 and federated performed better. This is where we take a
step further: How fast are the agents in learning in each regime and the number of agents participating
in it?

Learning Curve Figure 5 would depict the process of training.The global reward (negative cost) of
FedDRL approach was improving faster during the initial 50 rounds and then slowed down slowly with
the round approximately 150. The rewards of independent DR A agents, on the contrary, did not increase
as fast and did not reach the same high level. As an example, in 50 rounds of training the federated
global model had already realized the best and independent agent after 200 rounds. It means that it
converges more quickly to federated learning, during which all the agents are actually gaining the
experience of every agent (in this case, 7 agents) as the knowledge is shared. Practically, in situations
where data gathering or simulation duration is a bottleneck, the federalized learning can attain a high-
performing policy with a significantly lower wall-clock time, or iterations, of using simultaneous
learning.

—20 1

—40

—60 A

—80 1

Global Reward (— Total Cost)

—100 A

—120 A1 —— Federated DRL
Non-Federated DRL

0 25 50 75 100 125 150 175 200
Training Rounds

Figure 5: This learning-curve comparison plot will help in demonstrating the learning processes and
convergence pattern of federated and non-federated deep-reinforcement learning in the supply chain
environment. There is a significantly steeper increase in global reward in the federated DRA curve in
the early training, plateauing at the point of almost an optimal value after roughly 150 rounds, compared
to the gradual improvement and reaching a low level of reward in the standalone agents. Statistically,
the accelerating increase and early stabilization is more efficient when dealing with aggregate
parameters at the level of different agents, as the sample efficiency increases and the variance of policy
changes diminishes. The distinct distance between curves during training reinforces the importance of
collaboration as it demonstrates that federated learning is superior having less iterations. Substantially,
this establishes the fact that joint learning representations on distributed digital twins yields faster
convergence and operationally stronger operational policies as compared to isolated learning, without
sharing raw data.
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Number of Agents Effect: Similarly, to see what collaboration can bring, we did federated learning with
a sub-sample of agents. As an example, we allowed only the two DCs and the factory to be federated
(and maintained retailers as streams of externally given demand not learning). That brought some
advantage but not so much - a reduction of costs was on the order of 10% as compared with 13.7% in
case retailers were also involved. In contrast, when we federated retailers and not DCs, the
improvements were lower (~ 8 percent). The entire chain cooperation was the most successful. This
implies that end-to-end learning (including all echelons) is significant in order to have all the
interdependencies. It also implies diminishing returns: adding the last small node will not add much,
but adding the big levels certainly will affect it.

Cross-Learning: It is one of the benefits, another, of federated learning: even agents operating in
distinctly different environments can gain knowledge of the patterns of others. In our environment, the
two DCs were a bit dissimilar with regard to the demand profiles (because demand profile in one region
was slightly higher in the case of our simulation). A non-federated strategy would make a few variations
of policies concerning each DC. In the case of federation they are left with a common policy that has
the strength to support both the profiles. As we saw, the poorly performing DC (with the more volatile
demand) had an advantage by borrowing some routines of the other (with the more stable demand) such
as keeping some safety stock level, which it could not have improvised on its own because of noise. In
the meantime, the policy of the other DC was somewhat more conservative than would otherwise be
the case, due to access to the volatile partner data. The overall net effect was better done - an averaging
of the policies can prevent over-specialization to the idiosyncratic local conditions. This can be
compared to the regularization in machine learning: federated averaging added a regularizing effect
which made no agent improve its results on its local demand pattern.

Data Privacy: It does not explicitly create the result numerically, but I think it should be mentioned: The
federated model did not involve the exchange of raw demand or inventory information among agents.
This is a tremendous advantage in terms of contexts of these being different companies. It recommends
the possibility of even rivals within a supply chain working together to eliminate waste (emissions, cost)
via a trusted third party who adds up their model changes. As an example, various suppliers might invest
back-end impartial models in forecasting logistics delays or transport consolidation moderation that
allows everyone benefit, and at no cost to disclose their respective volumes of supplies. This is in line
with the new perspectives that FL has the capability of facilitating SupplyChain 5.0 - high connectivity,
Al-assisted, but privacy preserving networks.

Strongness against non-1ID Data: In federated learning literature, it is a typical issue that different clients
are characterized by highly divergent data distribution (non-IID), and the global model can be prone to
oscillate or fail to represent any of the clients. We have some non-IIDs (i.e. one of the stores can always
have higher demand than the other). To reduce problems, the input values were normalized (the state of
each agent was normalized according to its own history (average and standard deviation), thus, e.g. the
state of inventory is a level that is measured using demand standard deviations). This assisted in
rendering the information of various agents more analogous to the neural network. This led to success
of the global model to the benefit of all agents. Individual performance of the agents was checked: the
costs were lower than those of the individually learned agents. Freeloading type was not present where
one agent loses out to federation. This is significant to a pragmatic adoption - they have to have an
advantage to enroll in such a scheme.

Statistical Confidence: To be sure that our outcomes are not just a result of luck, we ran several random
demand scenarios (altering random seeds and, moreover, attempting our hand at a scenario including
trend and seasonality). FedDRL had a record of being better. We have also used paired t-test of cost
result of FedDRL and Non-fed DRL in 30 cases of matched demand, the t-test result is t=5.73, p <
0.0001 indicating a significant difference. The same with the difference on emissions.
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4. Discussion

In the results provided above, it is possible to state that by means of a federated deep RL architecture,
which utilizes a digital twin, the sustainability and efficiency of the supply chain can be significantly
enhanced [24-26]. We are talking of certain more comprehensive implications:

Regarding Sustainability: The possibility to decrease the emissions by approximately 12 percent without
any capital investment (more intelligent operations) is rather influential. This strategy basically
identifies operational efficiencies (such as streamlined inventory and transport application) which
amount to reduced fuel consumption and wastages. Practically, these types of reductions may assist the
companies in adhering to the regulatory policy (such as an emissions trading or a carbon-tax case). It is
also interesting to note that most of the cost-saving policies also reduce emissions meaning a
combination of both green and lean precepts [27,28]. Using federated learning it is possible to
implement them at a multi-firm level - say, a coalition of companies might jointly train an agent to
minimise not only their own cost, but also the environmental footprint of the entire chain, a problem
that would historically have been the remit of central coordinators or market mechanisms [19,29-31].

On Technology Adoption: This would involve a number of technologies being integrated to complete
the implementation of this framework in a real supply chain [32,33]. The digital twins of supply chain
nodes should be created (some firms already employ simulation and digital twin programs of
warehouses or factories) [34-36]. And those twins are to be linked (which is becoming more and more
possible with internet of things and cloud-based service which binds data together). Then, Al training
pipeline will have to be executed on the twins - potentially, cloud or edge computing infrastructure - to
train the RL agents [37-41]. The federated learning would involve the use of a coordinating server which
may be run either by a neutral party or by a consortium. The data privacy and trust is important; such
methods as secure aggregation (encryption of updates and only sum disclosed) may be utilized. These
limitations, to the best of our knowledge, make near-optimal performance achievable.

Scalability: The number of agents that we have used is 7, and that is manageable; what about 100
suppliers? The method of federated learning has been shown to go to very large numbers of clients (e.g.,
thousands of phones in Google FL). It could pose a challenge in supply chain in that the environment
of each client is either more expensive or sluggish to simulate or run. Training might be sluggish, in
case of a complicated simulation which each of them has to perform. Nevertheless, environment
simulations can be paralleled. Moreover, we envision the future in which supply chain digital twins
could always be in operation in any case to monitor - it could be asynchronous to piggyback RL on them
and propose recommendations in real-time. There is still research being done in multi-agent RL at very
large scale; methods such as hierarchical RL may be required (e.g. one agent per region taking charge
of many of the stores implicitly, etc.).

Behavior Transparency: Black box nature of learned policies is one of the problems of deep RL.
Explainability is important to the managers to have trust on such autonomous decisions. Digital twins
can be useful in this case: one can ask the twin the RL policy vs a baseline to discover how it responds
to different situations, and intuition is formed (such as it happened in our case, we noticed that it gathers
shipments). It is possible to explain with references to visualization of twin states and actions that the
Al orders less now because it predicts low demand tomorrow because of the tendency, etc. Certain
reinforcement learning algorithms (such as the extraction of rules in neural networks) can also be
considered in order to produce human-readable policies although not trivial with the case of continuous
spaces.

Limitations: It will be appropriate to mention that our simulation is stylized. Actual supply chains are
more complexly uncertain (e.g. supplier reliability, transportation failure, multi-product interactions to
capacity). That would have to be addressed in the RL, and may require more complex neural network
structures (such as recurrent networks (time dependencies) or attention (multi product). In addition, any
simulation-based training makes one wonder: will the policy be effective in the real system in case the
simulation is not perfect? This is the sim to real transfer problem. In this case the fidelity of the digital
twin is important. In case the twin is correct, the policy will be efficient; otherwise one may have to
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resort online learning or tweaking with real data. Online federated learning is possible i.e. as each
company works and acquires actual data, then with time they update the global model to conform to
reality. This may render the system to be self correcting.

Strategic Issues: Federated learning in supply chains may also have strategic challenges: businesses
may not desire even an Al model with implicit knowledge about their business to be located externally.
Such techniques as differential privacy (noise on updates) can respond to that at some accuracy cost.
Incentives is another factor - when the result of one company is less favorable, it may be forced out.
The design of mechanisms that guarantee equitable benefit sharing may be significant (probably side
payments or cost-sharing plans hinged on the result of the model). The objective of the central planner
used in our analysis was benevolent (sum of costs). As a matter of fact, every company is concerned
about its profit. It might be possible to extend the framework by scaling the reward of each agent or
through a process of bargaining. But when savings on costs are attained, then all can usually share in
case contracts are made (e.g. cheaper logistics prices might be shared out in part).

The findings constitute a good demonstration of a potential breakthrough which Al-guided coordination,
based on the digital twins simulations and federated deep learning, can break numerous conventional
limitations in SCM (such as the absence of visibility and trust) to reach improved performance by all
parties and the environment. It coincides with the trending changes in academic literature and industry
- integrating Industry 4.0 digital twin solutions with sophisticated Al algorithms and joint data science
(the term Industry 5.0 is also used in the literature when the aspect of humanity and environment is
prioritized). Our work is not an exception as it shows quantitatively the possible gains and presents a
framework which may be improved and applied in the practice of the real supply chain.

5. Conclusion

The proposed paper details an interconnected approach to sustainable supply chain management as
federated learning and deep reinforcement learning are used in a synergistic way with digital twin
technology to allow joint and privacy-friendly optimization between dispersed supply chain
participants. The simulated three-echelon supply chain example systematically shows that the proposed
Digital Twin-Enabled Federated DRL statistically significantly can reduce the total logistics cost by
13.7 percent and carbon emissions by 11.9 percent compared to a traditional policy, while it performs
in many percent of the way an idealized centralized planner typically performs. The findings also
indicate that federated learning is always superior to the independent reinforcement learning and that,
agents converge faster and achieve an enhanced policy through shared learned representations and not
through raw data, an aspect of the importance of cross-organizational learning under the privacy
constraint of data. The sensitivity analysis of the sustainability weighting parameter demonstrates an
interpretable and constant cost-emission trade-off, such that moderate focus on the reduction of carbon
will produce substantial environmental advantages at a minimum economic cost, and strong focus of
sustainability will produce a deep cut of emission at a more and more expensive expense and offer
companies a versatile modulation of the control of operations in relation to the sustainability objective.
Methodologically, the contribution of the work to the literature is its focus on being one of the first to
model federated reinforcement learning to coordinate the supply chain between multiple firms, closely
linking learning agents with the digital twin environment to drive continuous simulation-based
optimization, and integrating carbon emissions into the decision-making goal instead of taking
sustainability as the post hoc evaluation measure. The results indicate that this kind of architecture has
the potential to be more helpful in creating digital twins of adaptable and smart supply chain tools that
are able to maintain both efficient and environmentally friendly operations through management
techniques like smoothing production and logistics synchronization. As per the practical side, the
attained benefits show great prospects of practical implementation, specifically by means of a gradual
implementation whereby companies can initially streamline the internal processes and then form a
federation involving the partners with whom they are associated with, which results in increased levels
of services coupled with lower emissions and greater resilience. Although the issues of data security,
incentive consistency, and infrastructure funding persist, the quantitative benefits of the proposed
framework that were seen in this research would indicate that this proposed framework represents a
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valid and timely avenue towards organizations trying to meet the stricter requirements of regulatory
frameworks and sustainable goals without causing major operational performance changes.

Despite the fact that the given case study is good evidence of the efficiency of the offered framework,
this is a controlled experimental environment, and multiple areas of future research appears naturally.
Future research needs to assess the framework to more massive and complex supply chain structures,
such as multi-product and multi-modal, and situations involving highly uncertain situations and
disruptions such as port shutdown, natural disasters, or geopolitical shocks. Another avenue that is
promising is the extension of the framework to risk management, such as the addition of reward
structure components such as service level guarantees, downside risk measures, or more attractive
reinforcement learning formulations that consider worst-case risk. More so, human knowledge systems
and learning-based systems should also be explored further, and especially so in accordance with the
aspects of Industry 5.0, which are human-centric and socially responsive, introducing human input can
guide to keeping the learned strategies operationally viable and within stage with tacit business rules
that are challenging to professionalize. Existing methods: The idea of transfer learning in similar supply
chain scenarios has a potential to enhance scalability whereby policies which have been trained in one
network or market can be transferred to another with minimum retraining with federated learning
potentially extended to a group of firms operating within a given industry to jointly identify useful
practices through suitable anonymity and governance structures. Algorithmsically, one might consider
a more advanced multi-agent reinforcement learning model in the future addressing more specific
models of strategic interaction in a densely coupled system, e.g. mean-field or opponent modelling
approaches. Lastly, the game-theoretic nature of federated reinforcement learning in supply chains
should be analyzed systematically, specifically, in the context where competing companies have some
partially conflicting goals; it may be necessary to combine the principles of incentive alignment and
mechanism design with the learning framework.
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