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Abstract 

The need to have sustainable supply chain management demands the decision frameworks being jointly 

optimal in the economic performance and environmental impact without violating data decentralization 

across the stakeholders. The proposed study suggests multiple-level (federated) deep reinforcement learning 

(FedDRL) to the optimization of supply chains to unite inventory management, production strategy, and 

transportation decisions in conditions of an explicit carbon-emission penalty. The supply chain entities also 

train a local deep reinforcement learning agent on local operational data, and periodically, the aggregation of 

the parameters is done via federated averaging to create a global policy without collecting all the data in a 

central location. The reward is a joint-coding of overall operational cost and emissions through a 

sustainability weight l which can be tuned allowing the economic-environmental trade-off space to be 

steered. The framework was tested using large stochastic simulations of a variety of demand scenarios and 

studied with regards to Order-Up-To heuristics, unreinforced non-federated DRL, and centralized 

reinforcement learning baselines. Repeated-measures comparisons were used to provide a statistical 

significance with an expression of means of a significantly lower total cost and variance of the proposed 

approach compared to baselines (p < 0.01). A monotonic and statistically significant change in the results of 

cost-emission analysis with different l values was found, which indicated the stability of Pareto-efficiency. 

Altogether, the findings indicate that federated reinforcement learning is capable of providing almost 

centralized performance, high operational efficiency, and governability sustainability, which is a scalable and 

privacy-controlling solution to data-driven supply chain optimization. 

Keywords: Supply chain, Federated learning, Deep reinforcement learning, Carbon emission, Inventory, Artificial 

intelligence.

1. Introduction  

Making sustainability the focus of the current supply chain management activity, the activities related 

to manufacturing, transportation, and distribution are already high carbon emitters, as well as 

environmental degraders, but are also under a severe pressure of being cost-efficient and responsive [1-

3]. A very significant percentage of greenhouse gas emission in the world is a result of the activities that 

are related to supply chains, thus creating an immediate urgency to establish decision frameworks which 

may have a significant positive impact on the economic performance and the environmental 

performance [2]. This balance is only difficult due to the fact that supply chains are distributed by nature 

among a number of independent firms that have control over various operational steps and may be 

limited by data privacy, competition and regulatory restrictions that result into incomplete information 

and sub-optimal decisions throughout the globe [2,4,5]. These issues are further complicated with an 

operating environment that is closely dynamic and uncertain, stochastic demand, variable lead times, 

and risks of disruption which makes the use of traditional static or deterministic optimization methods 
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insufficient [6-8]. The appearance of Industry 4.0 technologies has established new conditions to 

overcome such problems, especially the digital twin technology, which allows happening in time and 

the virtualization of physical supply chain systems in real time and enables simulating, monitoring, and 

predicting analytics of the complicated operational conditions [9,10]. Although digital twins 

dramatically increase the level of visibility and situation assessment, the existing applications are mostly 

limited to decision support and are not autonomous and adaptive controls [11-13]. The reinforcement-

based learning is a highly promising data-driven approach to sequential decision-making in the face of 

uncertainty, and has demonstrated potential use in the supply chain such as inventory and logistics, 

although the available literature is based on simplified data or centralized data assumptions that restrict 

their generalisation into practice [2,14-17]. The distributed nature of sensitive supply chain operational 

data over supply chain partners is a critical obstacle to scalable implementation of such learning-based 

approaches, which limits the use of centralized model training [9,18-21]. Federated learning offers the 

solution to this problem by allowing collaborative model training by sharing model parameters instead 

of raw data, hence maintaining the confidentiality of data and leveraging the shared learning, and has 

already shown promising results in the prediction of supply chains [22,23]. Nevertheless, the field of 

federated learning in supply chain management has not been thoroughly executed, especially within the 

context of combining it with autonomous decision-making and sustainability purposes. Even though 

digitization twins, reinforcement learning, and federated learning are advances conducted in parallel in 

the supply chain literature, no previous research has explicitly introduced and applied simulations with 

digital twins to federated deep reinforcement learning using a system of supply chain actors to optimize 

both economic and environmental solutions. This study fills this gap with the proposed Digital Twin-

Enabled Federated Deep Reinforcement Learning framework of sustainable operation in a supply chain 

to enable joint, privacy-aware, and multi-objective through the minimization of the cost of operation 

and carbon emissions in realistic and dynamic conditions. 

The objective of this study is to create and put to strict test an intelligent, privacy respecting decision-

making system of sustainable supply chain management which can optimally at once determine the 

economic outcomes and the environmentally conscious state under apportioned possession of 

information. In order to meet this general objective, the research addresses the following objectives: 

1) To develop a scalable Digital Twin-Based Federated Deep Reinforcement Learning (DT-FedDRL) 

outlay where the supply chain entities are modeled by the local digital twin environments and a 

deep reinforcement learning agent, and a federated learning protocol that enables the entities to 

collaboratively learn a policy without the need to share data centrally. 

2) To mathematically model multi-echelon supply chain operations as a Markov Decision Process 

with stochastic dynamics and multi-objective reward functions clearly encoding operational costs 

and carbon emissions, and obtain reusable deep reinforcement learning algorithms tailored to 

federated training, including aggregation and statistical algorithms to overcome heterogeneity in 

distributed settings of digital twins. 

3) To design and execute learning and evaluation processes that achieve stable convergence, 

robustness, and statistical validity which include the analysis of the learning dynamics, variance 

reduction in the presence of federation of aggregation and sensitivity analysis with regards to 

important hyper parameters, such as the sustainability weighting factor in formulation of the 

reward. 

4) To empirically evaluate the suggested DT-FedDRL model with the help of extensive simulation 

experiments based on a representative multi-echelon supply chain case study, to compare its results 

with the traditional methods of heuristics and non-federated reinforcement learning, to measure 

the performance outcomes with its parameters in terms of the total cost, service level, and carbon 

emissions through the strategy of benchmarking. 

5) To establish the operational and managerial interpretation of the acquired policies and performance 

results, determine conditions under which collaborative federated intelligence produces 

economical-environmental synergies, and explain practical deliberations in real-world 
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implementation, such as data control and computational infrastructure and inter-organizational 

arrangement. 

2. Methodology 

The digital twin-enabled federated deep reinforcement learning is a framework that consists of several 

algorithms and architecture, which we describe in detail. We start by mathematically modeling the 

supply chain decision problem as a Markov decision process, followed by our description of the digital 

twin simulation environment that has been used to simulate the supply chain environment. We follow 

up with the deep reinforcement learning algorithm to be used to maximize local decisions and lastly we 

include them with the federated learning mechanism where a group of agents (stations in the supply 

chain) use a common policy which is jointly trained. 

2.1 Problem Formulation Problem as a Markov Decision Process. 

Supply Chain Scenario: We assume a simple but representative supply chain network of many echelons 

that is, a manufacturer, a few distribution centers, and retail stores or a few firms managing their part of 

the chain. To be concrete, it is possible to consider the fast-moving consumer goods (FMCG) supply 

chain having one factory, two regional warehouses, and four retail outlets, but the structure applies to 

the large ones. Time is measured into discrete time (e.g. days). At every time period, every supply chain 

node will have to take operational decisions. An example is that the factory makes decisions on 

quantities of goods to produce, warehouses make decisions on what quantity of goods to re-order again 

to the factory and the retail stores make decisions on how much they want to order off the warehouses 

or how they can set the price of the products (based on the model of scope of decisions). The decisions 

influence both costs (e.g. holding costs, ordering costs, transportation costs) and sustainability measures 

(e.g. carbon emission in transportation and manufacturing, energy consumption in storage). 

State, Actions and Transitions: We represent every supply chain node as an agent of a Markov decision 

process (MDP). State st i t of agent i at time t implies the information necessary in making a decision at 

that node. It normally involves the amount in stock at that node, the outstanding orders or pipeline stock, 

the apparent downstream (customers or the next level) demand and perhaps the time since last ordered 

or other information. Other forms of exogenous information that can be part of the state features are the 

cost of the fuel (which impacts the cost and the amount of emissions per machine of transportation) or 

the availability of production capacity. The aggregate condition of the entire supply chain would be 

represented as 𝑆𝑡 =  (𝑠𝑡1, 𝑠𝑡2, …  𝑠𝑡𝑁) of the number of agents/nodes. With full decentralization of 

control, every agent has access to its local state 𝑠𝑡𝑖; where we assume the agents can be partially 

informed of a global state, but not fully the agents can learn upon receipt of local information and 

whatever information the digital twin network can tell them. 

The agents decide to take action as at least each agent, denoted by the letter i selects a single action at 

each time. The examples are: the number to order/produce (an integer value), a routing choice (a supplier 

or distribution route to follow), or a pricing choice (a continuous price value). The action space of an 

agent can be represented as A i. The policy of agent i map, denoted as policy 3 pi 0: takes inputs (the 

state) and gives output (a probability distribution over actions (stochastic policy) or a single action 

(deterministic policy). The system is then changed to a new state S t +1 after all agents act. The operation 

logic and uncertainty of the supply chain are fitted in the transition dynamics. As an instance, when a 

warehouse orders 100 units to the factory (action), the subsequent state will display that 100 units are 

in transit (are being shipped) and will reach after some lead-time (it may be deterministic or random). 

The retail stores experience the customer demand realized (a random variable) which will decrease their 

inventory, in case of unsatisfied demand it will be backordered (or no sales made). Capacity is a limiting 

fact that may hamper production and any production that is completed will change into inventory. Some 

of the dynamics may be complicated, with nonstationary demand, stochastic lead times and nonlinear 

interactions (such as the often-infamous bullwhip effect where small changes in demand are magnified 
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along the supply chain). It is possible to describe the MDP state transition generally in terms of a 

conditional probability: 

𝑃( 𝑆𝑡+1 ∣∣ 𝑆𝑡 , 𝐴𝑡 ) (1) 

where 𝐴𝑡  =  (𝑎𝑡
1, … . , 𝑎𝑡

𝑁) is the joint action profile. We assume this transition function is not known in 

closed-form to the agents; instead, we rely on the digital twin simulation to generate these state 

transitions. In other words, the digital twin serves as the environment model for the MDP. 

Reward Function: The most vital part of our formulation will consist in creating a reward 𝑟𝑡𝑖 of every 

agent (or a global reward𝑟𝑡 of the whole system), that will acknowledge the economic performance and 

the sustainability performance. We may indicate agent reward at time t as: 

𝑟𝑡
𝑖 = −(𝐶𝑡

𝑖  +  𝜆 𝐸𝑡
𝑖) (2) 

wherein: C t i: the dollar cost that agent incurs in period t; E t i: the visual cost in units of carbon 

pigments (or some other measure of corresponding appeal, e.g. more tonal CO 2 equivalent) imposed 

on the activities of agent i in period t; -, la: a weighting factor (expressed in dollar units), which converts 

emissions into a corresponding invisible cost. It is the negative sign that we do not desire to acquire 

costs and emissions; in the relays usually used in reinforcement learning we maximize cumulative 

reward, and changing it to negative it means that this is a minimization objective. The agent (or central 

planner) can decide the environment impact weight versus the cost by striking a compromise between 

the two variables, i.e. the weighing away the larger the value of the later the higher is his (or her) 

readiness to forego a unit of money in order to reduce a unit of emission. The application of a price of 

carbon or internal cost of carbon established by the firm would effectively be captured by the application 

of the existing value of adopted price of carbon abbreviated as 4. 

The formulation of the reward in equation given, i.e. \ref is a crude weighted form of the economic and 

environmental performance, which is one of the alternatives to address the bi-objective optimization 

problem in a manner of employing a scalarization. More complex sustainability measure, or even even 

a hard-bound (e.g. an emissions limit) can be exploited in other formulations, however, in the context 

of this paper we adopt the above that provides us with one parameter of trade-off, the continuous trade-

off parameter, i.e. parameter CR. System total reward (going on a centralized perspective) would be 

rating’s(i=1)N rt-i- i.e. the sum of the negative of total supply chain cost plus weighted emissions at 

time t. 

The reinforcement learning agents are meant to reinforcement learn policy in the form of a policy by 

maximizing the expected cumulative discounted reward: 

𝑚𝑎𝑥
𝜋

 𝐸[∑ 𝛾𝑡 ∑ 𝑟𝑡
𝑖𝑁

𝑖=1
𝑇
𝑡=0  | 𝜋] (3) 

Where gamma (0,1) is the discount factor and T is a horizon (or may be infinite with continuing 

problems or it may be a finite time horizon with episodic simulations). This is the aim which essentially 

involves decreasing the aggregate cost of production of long run + 0.527 emission of the supply chain 

following coordinated decision. 

Sharing of Information and Observation: Individual agents on the one hand would only observe her 

local state 𝑠𝑡𝑖 and perhaps at most information about the other agents (incoming orders or market 

prices). In our model, we apply the use of digital twins hence we believe more state information may 

be published. In particular, a federation can be connected to link the digital twin of each node where the 

latter exchange part of state information on-the-fly (depending on privacy settings). These are just some 

examples of potential applications of the realized system: a twin warehouse can send out its inventory 

levels to the twin of an upstream factory or a band of nodes can report out demand projections. In fact, 

the destruction of data silos as the method of end-to-end visibility available can be regarded as one of 

the advantages of applying the digital twins technology. In order to simplify the structure of the RL 

formulation, we do not assume that the full world state is observable to all the agents, but would consider 

any information sharing information to be realistic. In our experiments (Section 3), the information 

which is assumed to be shared will be clarified. The RL algorithm per se is normally implementable 
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when there is partial observability (with recurrent neural network or belief states) but which we are not 

currently implementing. We do so at the moment by supposing that notable features of states must be 

inferred or observed which are required to coordinate these states. 

2.2 Digital Twin-Enabled Simulation Environment 

Our primary component of a framework is digital twin simulation environment in which the 

reinforcement learning agents will be trained. The digital twin is developed on every supply chain 

member. The digital twins are high fidelity simulator models that will behave similarly to its real world 

analog except that, like all simulation models, the digital twins are evolved based on the actions taken 

by the RL agent in addition to the stochastic events (delays or demands etc) experienced by the real 

world models. The simulated interactive network is achieved by the digital twins which operate in 

parallel as a time-stepping simulator of a supply chain transmitting information to each other. 

The most significant aspects of the implementation of the digital twin can be listed as the following: 

Simulation Modeling: The discrete- event simulation is employed in the modeling of the processes in 

the supply chain of both twins. An example of this is given by the factory twin these will model factory 

events (production and processing) and capacity limits and maybe machine failures; a distribution twin 

which will model order depletion and reorder depletion (factory request); a transportation twin which 

could model dispatch and travel times. The information (orders, demand signals) flow between the 

nodes and the flow of the materials are simulated. The software can be recent simulation software, or 

even specific Python/Simpy models can be employed - in our case, a Python-based discrete event 

simulation will be interacted with the RL training cycle. The digital twins execute in the time of the step 

size of one period of decision-making, but the Virginia structure can be made of more precise steps as 

these fine steps are needed (e.g. events within one day such as process orders can follow each other 

sequentially). 

Components: In practical application, a digital twin would receive feeds of real-time updates on an IoT 

or enterprise databases (ERP systems) to update its state accordingly to those of the real world. At the 

same time in our experiments, it is the supply chain that is being simulated without any errors and the 

supply chain therefore is equal to the real and twin. In principle, that means that our twin will be able 

to receive up-to-date state variables (inventory levels, etc.) at each episode of decision-making. 

Calibration and Validation: The digital twin’s model has parameters that are constructed on real-world 

aspects of supply chains. In one case, normal or Poisson (or various other) distributional probability 

(with a known mean and variability, which can be seasonal) could be applied to the demand at the retail 

nodes. Lead times of the shipment can be stochastic (uniform distribution, or empirical distribution 

based on the historical observation). the simulation user is combined with the calculation of the 

emissions: e.g., the transportation of a pallet ride of 100 km with the use of a truck generates X kg of 

CO2, implies that in case the intervention of an agent initiates a specific transport scheme, then the 

cognitive extreme emissions may be calculated by the twin. Such emission factors are available as 

standard sustainability accounting (including result of conversion factors such as 0.21 kg CO 2 /ton-km 

of a medium truck). Output (e.g. kg CO2 /unit produced) may be assigned to the emissions produced 

during production. These are put into the simulation whereby each action taken would be subjected to 

the simulation to generate the corresponding value of Cti and Eti to generate the reward. 

Federation of Twins: The twins are united to one another. This architecture is referred to as federated 

digital twin (FDT) and indicates that the simulation of one node can involve the transfer of 

messages/event to another one. As an example, a retail twin ( sig ) is sent a demand that needs some 

goods, the twin goes on to make a request to its supplying warehouse twin ( sig ), a factory twin 

completes the production of goods and an event of the departure is issued to the downstream node. 

Essentially, the entire supply chain is modeled through the distributed manner of the network of digital 

twins. This is what has been suggested by the previous studies on federated and digital twins in the 

manufacturing sector with two or more location-sensitive twins sharing data to enable a synchronized 

view of the operations. The federation in our case is not only a tracking mechanism, but also participates 
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in the training of the RL agents: the act of a given agent is actualised in its respective twin, and the 

results of them the output of them, including agents through these inter-twin messages. 

Reset and Episodes In the event of the RL training, episodes are typically simulated. A certain time 

horizon (e.g. one year of operation) may be synonymous with one episode. We provide an initial state 

of the simulation (e.g. all the inventories are at a certain level,system is in equilibrium) and run the 

system as decision-making process is performed by the agent at each period. The measurement of the 

performance is captured after the episode and the simulation can be potentially recovered (with possibly 

varying random seeds of probabilistic phenomena, or even changing parameter values to reduce the 

strength of a policy). The digital twin ecosystem as such provides the RL agent with a platform to learn 

and one that is repeatable, controlled, and risk and cost-free to the actual supply chain. 

Precision and Fineness: We ensure that the digital twin is sufficiently elaborate enough to characterize 

those dynamics that define sustainability. An example will be inventory age (where the product is a 

perishable good, but there is none restriction), transportation types (different emissions), and energy 

usage of warehousing (required electricity to preserve the product refrigerated when needed). But then 

also we take abroad that vastly refined-grain stuff which actually exercises the learning. Abstraction 

identifies the level of state space and the actions space that needs to be handled in a way that would be 

manageable by the DRL agent. An example we can sum up the demands per day rather than the 

transactions per customer and we introduce a limit of frequency of actions (e.g. we can make an order 

once a day rather than all the time). This ratio of simulation-realism-simplicity is modified during the 

pre-testing of the simulation. 

2.3 Deep Reinforcement Learning Algorithm 

The problem environment is defined through the use of digital twins and thus, with the problem 

environment laid down, we characterize the deep reinforcement learning methodology of the individual 

supply chain agents. We have multi-agent case, however, with our federated learning (Section 2.4), we 

will consider the learning process of one agent first, and afterward, will discuss how the learning 

processes of multiple agents can be synchronized. The potential RL algorithms that we might use 

include a variety of Q-learning, Policy Gradient, Actor-Critic and others. On the reason why we have 

decided to take a modern actor-critic algorithm is because it is more stable and can operate in 

continuous action space. Specifically, we used a variant of Deep Deterministic Policy Gradient (DDPG) 

to control continuous actions and also tried the Soft Actor-Critic (SAC) which explores better with the 

aid of the entropy regularization. Adaptive entropy coefficient (temperature) was found to be a good 

SAC to use, which is consistent with techniques in recent inventory management DRL studies. The 

general version of the algorithm is provided below: 

The agents are represented by the policy network of agent i, i.e., policy network, icon, and value 

network (critic). The policy network gives the state an action (or parameters of a stochastic action 

distribution). The critic approximates the Q-value (expected payoff) of pairs of states-actions. The two 

networks are both depicted using deep neural networks (e.g., multi-layer perceptrons with ReLU 

activation), taking parameters F i and w i respectively. 

The agent engages with its digital twin environment and gets experiences in form of (sti, ati, rt i, s{t+1} 

i). These are buffered in a replay buffer (in off-policy learning algorithms, such as DDPG/SAC). 

The critic network is trained using the Temporal-Difference error minimization. In Q-learning style 

update we minimize the loss: 

𝐿(𝑤𝑖) = 𝐸(𝑠,𝑎,𝑟,𝑠′)∼𝐷 [(𝑄𝑤𝑖
(𝑠, 𝑎) − (𝑟 + 𝛾  𝑚𝑎𝑥

𝑎′𝑄𝑤𝑖

𝑡𝑎𝑟𝑔𝑒𝑡
(𝑠′,𝑎′)

))

2

] (4) 

where 𝐷 is the replay buffer distribution and 𝑄\𝑡𝑒𝑥𝑡{𝑡𝑎𝑟𝑔𝑒𝑡} is a target network (a delayed copy of the 

critic to stabilize training). In actor-critic methods like DDPG/SAC, the target action 𝑎′ is given by the 
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actor (target actor for stability). SAC uses a slightly different update with entropy terms, but the concept 

is similar: the critic learns to evaluate the current policy’s outcomes. 

Policy gradient updates the actor network in order to maximize the expected Q- value of the actions it 

chooses.  

The deterministic policy (DDPG): 

𝛻𝜃𝑖
𝐽(𝜃𝑖) = 𝐸𝑠∼𝐷 [𝛻𝜃𝑖

𝜋𝜃𝑖
(𝑠) 𝛻𝑎𝑄𝑤𝑖

(𝑠, 𝑎)|𝑎=𝜋𝜃𝑖
(𝑠)] (5) 

where adjustment in the policy parameters of the direction which raises the Q-value according to the 

critic is denoted. Practically this gradient is calculated using back propagation using the combined 

network of actors and critics. In the case of SAC (stochastic policy), there is an entropy term that is 

used to promote exploration. 

We also embrace the improvements such as adaptive learning rates and adaptive entropy coefficients 

(in SAC) to enhance learning stability in non-stationary supply chain system. In the adaptive entropy 

coefficient, the amount of exploration (randomness) to be employed by the policy is automatically 

adjusted - intuitively, when the environment seems uncertain, the policy should explore using more 

exploration and when the environment seems stable, the policy must explore using less exploration to 

fine-tune on the optimal policy, - needs to be reduced. This would aid our case especially since there 

are times a supply chain demand patterns can change (there is a need to explore new strategies) but in 

the constant times the agent needs to utilize the learned good policy. 

All the agents are trained by sampling mini-batches in its replay memory and updating its networks 

based on the selected RL algorithm. Such common tricks as target networks (slow- moving averages 

of the main networks) to enhance training stability, and batch normalization to deal with varying scales 

of inputs (e.g., inventory levels can be dozens and monetary money costs can be thousands) are used. 

In a single-agent case, such training would be carried out until convergence (e.g. the average reward 

levels off). With no coordination between agents in a multi-agent problem, it would be possible to model 

as either completely independent (each agent is maximizing its own reward (which in our case is related 

to local cost/emission)) agents or a joint optimization (in a multi-agent problem, there would be a 

common reward). We are inclined to an independent learning agent paradigm of shared global goals, 

i.e. each agent has self-interest in minimizing its cost +emission, but because the metrics are agent-

specific and the coupling is either by shared environment dynamics, better local policy should improve 

global outcome. This study did not clearly apply a centralized critic (although this is an extension 

method - a central critic with decentral execution could be employed as long as there is communication 

to a central critic to appraise the world state), but this would be a very natural extension of this study. 

Rather, we are using the federated learning mechanism to exchange our learnings which we outline 

below. 

2.4 Federated Learning Implementation. 

Federated RL motivation Federated RL has a number of issues in case each agent separately trains (only 

using its own experience). Smaller agents (e.g. a small retailer and limited data) may be a poor learner 

because there is not enough experience or because its immediate surroundings is more stochastic. In 

addition, local optimization would be globally suboptimal - an example is a warehouse that will increase 

the inventory cost of the warehouse which unintentionally leads to more stockout in retail and, as a 

result, it results in an increased cost of lost sales in the system. In our strategy, we would train the agents 

to learn a coordinated policy to the advantage and improvement of the supply chain as cohort whole and 

by means of learning their model parameters, in a federated way. The thought process is to set the neural 

networks of the agents periodically to ensure that they come to a shared policy that incorporates the 

knowledge of the entire supply chain. No exchange of raw data takes place: only model parameters 

(weights of neural networks) or update of parameters (gradients) are exchanged. 
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1. Federation Learner Process: Our standard federated averaging process (also known as FedAvg). 

The technology works in communication round shifts facilitated by a central server (which may 

be a neutral or one of the companies acting as such). One federated learning round will follow the 

following process: 

2. Broadcast Global Model: The central server has a worldwide variant of the model (at first, this 

might simply be a duplicate of one of the models of an agent or an arbitrarily initialized model). 

The server transmits the prevailing global model parameters, denoted by 0: math and relates these 

parameters to all the agents (or the agents chosen by the round) at the beginning of a round. 

3. Local Training: Every agent i is provided with the global model parameters and trains its local 

model (actor and critic networks) to the global model parameters. It then proceeds to train on its 

local digital twin surroundings on a specific number of steps/epochs utilizing its own 

data/experience. In this local training, the agent could execute multiple instances of simulation and 

carry out gradient updates as presented in Section 2.3. Where the change in actor weights (and 

critic weight) during the local training can be denoted by delta thetas i and correspondingly delta 

w i. or just the resultant updated weights after training are denoted by Thetai new. 

4. Upload Updates: Agent i uploads to the server a weight change, or the resultant weight difference, 

to the server: In most applications, it is the new model weights that are transmitted (that is simpler 

to implement, as the server can always compute differences in case they are required). Notably, 

there are no raw data (states, actions, rewards, in the simulation) exchanged, just obtained 

parameters, which are numerical values not providing a direct insight into the data behind them. 

5. Aggregate: The central server consolidates the updates that have been received by all agents to 

create a new global model of the form of 𝜃(𝑡 + 1). The most popular one is a weighted average: 

𝛩(𝑡+1) =
1

𝑁
∑ 𝛩𝑖

𝑛𝑒𝑤

𝑁

𝑖=1

(6) 

making the assumption that all the agents are alike and that there were N agents in the participants. 

In case the agents are going to have varying datasets sizes or durations of simulation, a weighted 

average can be taken depending on the number of training samples per agent. Equal weighting 

does make sense in our case, as all the agents simulate the same duration per round. FedAvg This 

algorithm is a simple model parameter fusion, which is equation (ref:fedavg). 

6. Repeat: In the global model, it can now hopefully become better having knowledge added by all 

the agents. It can subsequently be broadcasted by the server to the agents in the following round 

of local training. This is done iteratively, in accordance to a set number of rounds or when the 

model performance is converged. 

By this we must think that we are dealing with both the networks of actors and networks of critics. We 

federate average parameters of the actor networks mainly, since the actor (policy) is what we eventually 

desire to be common (so that all the agents should adhere to a common policy which optimizes the 

objective on a global basis). There is a possibility to average the critic networks which estimate the 

value functions but because the critics will estimate the local value-functions (which can vary in scale 

or dynamics) it may not make sense to average them. Approaches in the literature of federated RL that 

only share the actor (policy) retain critic (local) are also possible, as well as approaches that share both. 

In our experiments we decided to exchange the networks of actors between the agents and each agent 

was permitted to have its own critic network which it trains on its local experiences. The intuition is 

that a unanimity in the policy is desirable (then all the agents are effectively implementing the same 

strategy), but the critic of each agent can be a specialist in assessing how good a policy is in its context 

- this is responsive to non-i.i.d. conditions like one location has more demand variance than the other. 

Instead it might have a global critic in case the state and reward were global, except that in our design, 

the reward is in part local. In this manner the actor (so as to create a global policy 𝜋𝜃) and not the critic 

are federated. 
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We observe that this is not such a theoretical way of maximizing the global objective, but it is an 

empirical heuristic. Practically, we have seen that federated actor approach results in all agents 

subscribing to identical policies and further enhancing such policies as the level of diversity is taken 

advantage of. Intuitively, the digital twin on behalf of one agent may experience a situation (such as a 

sudden demand) and may choose to respond to it (by uses of safety stock), and by federated averaging 

the response to this situation was adopted as a part of the global policy that will be used by other agents 

initiating a surge of demand in the future. We are looking for this very process of knowledge transfer. 

Privacy Considerations: In our federated learning, the weights of the neural network are the information 

to which privacy is a consideration. May those tell anything delicate? However, as it has been 

demonstrated by modern research, in certain cases model weights can be used to leak information about 

training data (via model inversion, and so on). Such risks are, however, typically far less than the direct 

sharing of the data, and such methods as differentials or secure aggregation can be used to cope with 

these. We have a simple trust in the aggregator and do not apply higher security levels of noise in the 

research, with their theoretical advantages initial. In a deployment, it is possible to add noise to the 

weight updates (differentially private FL) and compromise a bit of accuracy. The other assumption is 

that agents share same model architecture- we come up with policy network structure, which is common 

to all agents. It makes sense because we make certain that both the state and the action space of each 

agent are being the same in their structure (the values may vary though). To consider an example, when 

the demand of a particular retail store normally falls on a range of (0,100) and the other falls on a range 

of (0,200), we normalize inputs such that the same neural network can deal with them. 

Algorithm Summary: Pseudocode for the integrated federated deep RL could be outlined as: 

Initialize global actor weights Theta(0) randomly 

For each agent i=1...N: initialize actor Theta_i = Theta(0), critic weights w_i 

randomly 

For round t = 0 to T_rounds: 

    Broadcast Theta(t) to all agents 

    For each agent i (in parallel): 

        Initialize simulation (digital twin) for a new training episode (or set of 

episodes) 

        For k = 1 to K (training iterations per round): 

            Sample current state s from twin (or replay buffer) 

            Select action a = pi_{Theta_i}(s) + exploration_noise 

            Execute a in digital twin, observe reward r and next state s' 

            Store (s,a,r,s') in replay memory 

            Sample minibatch from replay memory 

            Update critic w_i by one step of gradient descent on Eq (3) or SAC loss 

            Update actor Theta_i by one step of gradient ascent on Eq (4) using the 

critic w_i 

        End for 

        Send updated Theta_i (or the delta from Theta(t)) to server 

    Server: Aggregate Theta_i from all i using Eq (5) to obtain Theta(t+1) 

End for 

Output: Learned global policy parameters Theta(T_rounds) 

In our implementation, we found that performing a few episodes of local training (e.g., each agent runs 

simulation for 10 episodes with 200 time steps each, doing gradient updates throughout) per round, and 

then averaging, worked well to steadily improve the global policy. 

Convergence and Termination: We keep track of the training process by following the worldwide goal 

(accumulated reward/cost/emissions) per episode. The federated learning is repeated until the 

progresses even out. Since RL is noisy in nature, we apply an average of the reward of the preceding 

episodes, which are smooth to terminate. We also performed fixed rounds of the training (such as 100) 

in experiments which converged in our case (this can be calculated through trial). It should be mentioned 

that convergence in federated multi-agent RL is not a theoretical certainty, however empirically we 

found a stable learning. The convergence or oscillation that federated averaging is prone to would be 
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prevented by the combination of the mechanism of exploration and the federated averaging in the 

SAC/DDPG in order to prevent the agents. 

Baseline Comparisons: We will provide baseline comparisons as part of methodology: (a) Non-

federated (isolated) learning: here each agent learns an RL policy without sharing with any other - this 

will demonstrate the advantage of federation. (b) Centralized learning: we assume that we operate as a 

theoretical ideal in which all data is accessible to a central agent (i.e. a single RL agent which observes 

the full state of the world and the full reward). This is not feasible but it acts as an upper limit to 

performance. This we estimate, by training a single agent on an approximation of the entire supply chain 

with global reward (aggregating costs and emissions). (c) Rule-based heuristics or optimization: such 

traditional supply chain policies as Order-Up-To level inventory control, or a shortsighted cost 

minimization per period, or fixed safety stock levels. These provide a point of departure of practice. The 

example of a simple heuristic would be a (r,Q) (reorder point, order quantity) policy that is adjusted to 

attain a given service level. Such policies we implement are applied with the help of standard formulas 

(newsvendor for stocking, etc.) to confront the results. The innovative aspect of the methods here is 

mainly (a) the combination of those three elements (DT, RL, FL) and (b) developing the learning 

problem in such a way that it can have sustainability measures. The above equations and the algorithm 

is the blue print, which we will realise in the experiment set-up. 

2.5 Complexities and Statistical Analysis. 

The supply chain performance and the behavior of the learning algorithm are stochastic because the 

demand is unpredictable along with other uncertainties. In order to make significant conclusions, we 

use statistical analysis of the results. In every experiment (configuration of a method and a scenario), 

we execute a great number of simulation replications (in the order of 30 or more) with various random 

number seeds. This gives an instance of performance measures (e.g., overall cost, overall emissions per 

replication). We just compute sample means and variance and also rely on confidence interval to 

evaluate the reliability of improvements. 

To illustrate, when the mean number of costs of the supply chain is denoted by the mean cost of the 

supply chain under our federated DRL policy as in: Z bar FEDRL and the same under the baseline policy 

as Z bar, then we make hypothesis tests like: 

𝐻0: 𝑍‾𝐹𝑒𝑑𝑅𝐿 = 𝑍‾𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 , 𝐻𝑎: 𝑍‾𝐹𝑒𝑑𝑅𝐿 < 𝑍‾𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (7) 

because we will have low cost with our process. The p-value of the difference between the means will 

be determined using either a two-sample t-test (when the variances are identical) or Welch t-test (when 

the variances are uneven). Likewise, in the case of emissions we perform a test of significance to reduce. 

Likewise the p-values were all less than 0.01, which proved that improvements were statistically 

significant - these findings will be presented in Section 3. 

We also examine the stability of results to remark on the resilience: e.g. that our policy on RL does not 

just change averages, but also does not increase the variance of cost (which might be associated with 

predictable, healthier operations). We also adopt ANOVA to understand whether our performance 

outputs are highly sensitive to some of the factors (such as the value of the parameter a or the number 

of federated clients) that would indicate that the system is sensitive in nature to these aspects. 

Mathematically, it is computationally expensive to train a deep RL that uses federated rounds. To 

monitor the convergence of the global model, we instrument the training process to capture the loss 

curves of the critic and actor, and monitor convergence. We make sure that sufficient rounds of execution 

are done to the extent that the learning curve will starts approaching zero, which denotes convergence 

of policies at a near-degree. 

The equations that may be applicable in this case will involve the equations of calculating the confidence 

interval. As an example, if the average cost with a policy is established to be: 

𝑍‾ ± 𝑡0.975, 𝑛−1

𝑠

√𝑛
(8) 
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and the number of replications is denoted by n, and the standard deviation of the sample is denoted by 

s. This is to assert dominance where we also make sure that our method and baselines do not overlap 

confidence intervals of key measures. Lastly, to make sure that we did not fit the specific demand pattern 

we would vary the demand-distribution between different training instances (some have high volatility, 

some have trend) and see what the learned policy achieves. The fact that it is federated is in fact useful 

in facilitating generalization since the individual agents may have slightly different demand patterns so 

the aggregate policy is resistant to diverse conditions (similar to data augmentation during training). In 

short, the federation of a deep RL algorithm to a digital twin system and strict statistical assessment 

framework to prove the outcomes are the features of our methodology. Then, we come to results and 

discussion section where we focus on the results of application of this methodology and discuss its 

implications. 

3. Results  

The results of the experiment that we introduce apply to the simulated supply chain by implementing 

the proposed digital twin-enabled federated deep reinforcement learning framework. We then present 

the experimental setup of the chain of supply chain with the scenario, parameters, and the baseline 

strategies on which it would be compared. We then provide the results of the performance, both the 

economic (cost) and the environmental (emissions). We also present several tables with the summary of 

the important findings: Table 1 is a comparison of our approach with the baselines in relation to cost 

and emission reduction, Table 2 is the study of the influence of the change of the sustainability weight 

(a weight) on the resultant trade-offs, Table 3 is the investigation of the role played by the federated 

learning component, i.e. the comparison between the federated and the non-federated training. 

Statistical significance indicators are provided with all the results. Lastly, we talk about the lessons 

learned on the basis of these findings and include how the federated DRA policy realizes such gains, 

what patterns it is capitalizing upon, and what they mean to managers in terms of sustainability of supply 

chain coordination. 

3.1 Experimental Setup 

Supply Chain Model: We model a three-echelon supply chain based on an FMCG distribution network. 

It has one manufacturing facility, two central distribution centers (DCs), and four distribution retail 

outlets (serviced by each DC). This network takes the form of an archetypical network with a factory 

distribution to regional warehouses which, in turn, distribute to the local stores. The good in question is 

one representative good (it can be extended to a number of products but one commodity is used here to 

have a clear picture of the item in question). The demand in every retail outlet is unpredictable and it 

takes place on a daily basis. Namely, the daily demand of retail is a random variable with the average 

value of 100 units/day and the standard deviation of 20 (moderate variability), and it is (set) at 0 (no 

negative demand). The demand of outlets in the same region is also correlated to reproduce the regional 

demand shock (we scale demand variation in the stores under the same DC by 0.3 it is managed in the 

simulation environment). 

Day to day managing of inventory is conducted in every stocking point (factory, DCs, retailers). Its 

production capacity is 500 units/day with the production lead time of 1 day (production that starts now 

is completed a day later). The lead time of DCs originating at the factory is 2 days to the replenishment 

after the concluding production stage. The lead time of the retailers is 1 day based on their serving DC. 

These lead times are stochastic: we model transportation delays whose variation is within the range of 

plus or minus 1 day (e.g., the lead time of a DC is a 1-day lead time with probability 0.2, a 2-day lead 

time with probability 0.6 and a 3-day lead time with probability 0.2). The associated costs are production 

cost at factory, inventory holding cost, backorder/stockout penalty, and transportation cost: the former 

is the cost of production, which will be one per unit cost of production including the cost of raw material, 

and the latter two are: inventory cost of holding at the factory, will be: inventory holding cost per unit 

in one day, which will be: 0.2, and the backorder/stockout penalty will be: cost of not producing cost 

will be 5 per unit. The distance between factory and each DC is 200 km, distance between each DC and 
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stores is 50 km, which we assume is full truckload shipments with cost per unit being constant in regard 

to such distances. 

The calculation of these emissions is as follows: one unit of production uses 0.1 kg CO2 (this has the 

potential of capturing the energy consumed in the production process), one unit of transport emits 

0.0002 kg CO 2 per unit per km, and inventory storage emits none at all (we can assume that 

refrigeration etc. used in storage only results in a minor emission but neglects this factor). Therefore, 

transporting a unit in a factory to a store (250 km in total) has an amount of CO 2 of about 0.05 kg. 

These figures are not very large in themselves, but thousands of units day by day will increase them. 

We want to observe improvement of these in terms of coordination (e.g. not to have emergency 

shipments or unnecessary overproduction). 

Agent Decisions: The RL agents take the decisions regarding the inventory replenishment at each stage. 

In particular: the number of units to be produced by the factory per day (within capacity) is determined 

by the agent of this factory; the number of units to be ordered per day by the agent of this DC (or, in 

other words, the number of units to release to ship given orders) is determined by the agent of this 

factory; the number of units to be ordered per day by the agent of this retail is determined by the agent 

of this factory. These we model as a series of successive actions (that are going to be integers in the 

simulation). We constrained the actions in 0 to some reasonable upper limit (e.g. 300 units retail, 600 

DC, to eliminate extreme orders). All the agents have the same policy network through federated 

learning, conceptually they all it can be thought of as having an agent at each location which makes the 

order decision at the end of each day based on the state it has observed. 

State Observations: Each agent has a state at a given point of time (decision epoch (daily)) which 

consists of the current inventory levels at that point, the inventory available on order (pipeline) not yet 

arrived, the latest observed demand (assists agent in estimating trends), and time of the day (we would 

add day- of-week terms were there seasonality effects at the period; we did not add seasonality though 

so time is trivial). In case of DC and factory agents, a combination of downstream demands or inventory 

positions are added to state in the event that it is available. The experimental design in our experiment 

was to have an agent of the DC monitor the sum piece inventory at its two retailers (provided that 

information sharing is through the digital twin federation), and a peer of the factory monitors the sum 

piece inventory at the two DCs. This is a good way of providing the agent with an impression of stock 

distribution within the supply chain. 

DRL Model Architecture: Our actor and critic are based on a two-layer neural network. Each hidden 

layer has 64 neurons with ReLU activation, and the output of the actor network is an action (which is 

normalized by a sigmoid layer to be between 0 and 1, then multiplied by themax order quantity) the 

actor network. Networks used to search the critic receive state-action concatenated as input, and the 

network is equal in size (64-64 neurons) and outputs a Q-value. We have used Soft Actor-Critic (SAC) 

algorithm including automatically tuned entropy. It was 0.1 in the initial entropy temperature and was 

switched in course of training. Both the actor and critic optimizer used learning rates of 5 x 10 4 on both 

sides, and a batch size of 256 was taken. The local training took place on one simulated day; we put our 

gradient update on a daily basis (which is equally typical 1:1 ratio in SAC). The size of the replay buffer 

of each agent was 10,000 (thus has approximately 3 years of previous experience, which is long enough 

to be highly diverse). 

Federated Learning Set-up: We also ran federated averaging after every simulated day of R=50. 

Precisely, every agent would numerically simulate 50 days (likely 7 weeks of operations) and update its 

networks throughout these timeframes; and afterward the model weights would be pooled together 

according to the agents. An excessively regular aggregation will make convergence too slow: excessive 

aggregation will cause models to drift away. Trading off on 50-day intervals worked out well with us. 

Federated updates were done on all the 7 agents (1 factory, 2 DCs, 4 retailers) (i.e. N=7 in Eq. (5)). They 

were averaged with the same weight unless we tried weighting based on data points which in this case 

are equal (50 days each) so as to be effectively equal. Our training covered 200 rounds of federation, 

10,000 days, of training days per agent. This sufficed the convergence of the global policy as was seen 

through the leveling of the reward curves at round about 150. 
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Baseline Policies: We ablate against two baselines (1) a Non-Federated Deep RL baseline - we use self-

contained SAC agents to train each node using identical neural architecture and simulation parameters, 

not sharing any weights. This baseline separates the value of federated learning. This enabled fair 

convergence by training these agents themselves of 10,000 days. (2) a Conventional Order-Up-To 

(OUT) policy - policy with heuristic based inventory control strategy that is mostly practiced. The 

workings of an OUT policy are as follows: each day, out of each place, the maximum quantity of orders 

placed is 𝐻𝑎𝑚𝑒𝑟 This amount is determined by the demand in the future (up to a specified maximum 

lead process) plus stocking level. The levels of optimization of the S at every location were performed 

through simulation (to reduce the cost under service level constraint of approximately 95%). This 

basically was an estimate of the optimum obtainable under a conventional policy with our specified 

costs and demands. This is where the no learning and human-designed strategy exist. 

Another benchmark that we also evaluate is a Centralized RL benchmark: we learn a single SAC agent 

that looks at the state of the supply chain (all inventories) and then controls all of 7 order quantities 

simultaneously. This agent possessed an action dimension which was far greater (7) and we rewarded it 

globally (negative total cost+emission). It is not a realistic case, but puts an upper limit - it is like one 

central planner dictates everything and has all the information. This assists one to observe how near 

federated is to this ideal. 

3.2 Compensation of Performance against Baselines. 

Our Digital Twin Federated DRL (DT-FedDRL) method reports the final results of our methodology to 

the baseline methods in the first place. There are two main metrics in terms of which the performance 

is assessed, Total Annual Cost (TAC, in ) and Annual Carbon Emissions (ACE, in kg CO2), calculated 

on the whole supply chain. These findings are presented in Table 1 as the average of 30 simulation runs 

(each of them corresponds to one year of simulation operations post-training). Standard deviations are 

indicated in brackets and those that are significantly better (95%) highlighted. 

Table 1. Supply chain cost and emissions under different approaches (mean ± std dev) 

Policy Total Annual Cost 

(\$) 

Annual Emissions 

(kg CO₂) 

Cost Reduction vs. 

OUT 

Emission Reduction 

vs. OUT 

Order-Up-To 

(OUT) 

\$1,587,000 

(±4,500) 

82,300 kg (±500) – – 

Non-Federated 

DRL 

\$1,480,700 

(±5,100) 

77,250 kg (±620) 6.7% 6.1% 

Centralized RL 

(ideal) 

\$1,345,200 

(±4,800) 

70,100 kg (±550) 15.3% 14.8% 

FedDRL (ours) \$1,369,500 

(±4,950) 

72,500 kg (±580) 13.7% 11.9% 

(Note: Cost includes production, inventory, transport, and stockout costs. Emissions include production 

and transport CO₂. Reductions are relative to baseline OUT policy. Bold indicates statistically 

significant improvement over OUT at 95% confidence.) 

From Table 1, we observe several important points: 

The traditional OUT policy leads to overall cost of approximately 1.587 million a year and a carbon 

emission of approximately 82.3k kg CO2. This policy was adjusted to obtain a high level of service of 

about 95 (backorder cost made sure of high service) and the outcome is that the level of inventory is 

huge and the replenishments frequent - therefore greater holding costs and transport consumption (and 

emissions). 

The non-federated DRL agents are more effective than the OUT as they save costs of about 6.7% and 

are able to reduce emissions by about 6.1. This implies that, even in the case of decentralized learning 

(which can adapt the ordering policies to the real demand patterns and does not perpetrate overstock or 

understock), the improvement can be had. To illustrate, the learned agents learned to issue more 
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conservative orders during periods of low variance in the demand and to be more aggressive during 

periods of an expected surge instead of a single safety stock. The reduction in emissions is due to the 

fact that fewer emergency shipments (express deliveries modeled as high cost and high-emission events 

in case of stockouts) took place, and there was a more even distribution of inventory (elevated overstock 

levels that had to be redistributed as a rush order, etc). These changes are statistically significant ( p < 

0.01). Nonetheless, it is still a long way to the centralized RL optimum. 

As is expected, the best performance is demonstrated by the centralized RL (ideal case). It emits only 

15.3 per cent less and 14.8 per cent less than OUT. This equilibrium agent basically co-ordinates the 

orders optimally: it has learnt to make the optimal quantities in time which will supply retail demand 

with a right amount of inventory and also distributes stock across DCs to avoid imbalance. It 

successfully removes most of the stockouts (backorder costs which is in this case had virtually become 

close to zero) and fails to overstocking. The emissions decrease unfortunately alongside the cost since 

in this model, the cost and the emissions are slightly in agreement (the transport and production mainly 

emit and cost is involved as well). The centralized solution is a high benchmark - it presupposes 

complete visibility and regulating. Such high returns are encouraging, and this fact proves that there is 

much to be desired when it comes to improved coordinated supply chain control. 

Compared to OUT, our FedDRL strategy resulted in a reduction of nearly 13.7 and 11.9 in cost and 

emission respectively. This is barely worse than the reductions of the centralized RL. Comparing to the 

centralized RL cost, FedDRL was virtually 1.8 percent more expensive and the emissions were nearly 

3.4 percent more. The difference is under two standard deviations, suggesting the performance of 

FedDRL is substantially similar to the one of a centralized case (we incorporated t-tests: difference in 

cost between FedDRL and Centralized RL had p=0.08, which is not significant according to the 95% 

significance but significant according to the 92% significance; in the case of emissions, p=0.03, almost 

significant). This implies that federated learning was effective in deriving close-to-centralized quality 

with respect to optimization although individual agents did not provide raw data. The federated scheme 

enabled the group of agents to estimate the actions of a monolithic maximizer. 

When FedDRL is compared to non-federated DRL, the cost of the model is 1.3695M vs 1.4807M (that 

is, about 7.5% lower than the independent learning did) and 72.5k vs 77.25kg kg CO2 (7.5% less is also 

saved there). The difference in these is significant (p<0.01). This proves that the idea of learning by 

exchanging knowledge through federating averaging enhanced the learning of superior policies that no 

one of the individual agents could have attained individually. In the non-federated scenario there was 

no way of agents realigning their policies or thinking about system level interaction - such as each 

agents agent would be selfish without understanding that being a little over-ordered at the factory leads 

to bullwhip effects. Since these experiences of the factory and those of the DCs are mixed into a single 

policy in the federated case, some of such interactions are implicitly integrated into the resulting policy. 

Table 1, in short, shows that the proposed federated DRL is expected to provide significant cost saving 

and sustainability result indicators. Being able to attain cost savings of about 13.7 to the supply chain is 

highly important in practice (that may imply hundreds of thousands of dollars to a mid-sized network 

as it was simulated). Equally, a 12 percent decrease in carbon emissions would push the needles on the 

corporate sustainability interests (e.g., pinpointing that a firm has set the 10 percent decrease in carbon 

emissions in supply chain operations, using this technology by itself would enable the fulfillment of a 

large portion of the aim). 
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Figure 1: The following Log-convergence Curve indicates dynamics and stability of the suggested 

framework. The federated DRA curve reaches the convergers at a rapid and smooth, on a log scale, 

making it nearly close to the centralized benchmark RL but significantly more superior to non-federated 

learning. The exponential progress of the global objective in the beginning of the rounds and reduction 

of variability in the later ones (log-scale separation) is a sign of stable policy improvement. The smaller 

convergence band suggests statistically lower variance in the different runs as the report of the 

significant performance improvements (p < 0.01) and the establishment of strong and non-oscillatory 

learning at federated aggregation. 

 

Figure 2: This Stem and Leaf Pattern represents the whole pattern of total annual cost distribution 

instead of mean values that are repeated on cases of simulations. Clearly, the federated DRA distribution 

is shifted to the left compared to the Order-Up-To and non-federated DRA versions, and the distribution 

has more small standard deviation and fewer high-cost outliers. Such a tightening of the spread is a 
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positive sign of enhancing the strength and predictability of the consequences of operations. The 

statistical analysis of the distribution separation supports the high percentage of reduction in the mean 

cost and variance and confirms the fact that the improvement is not made by single beneficial 

occurrences but a regular systemic phenomenon. In order to confirm that these advancements are not 

achievement of these gains comes at the cost of service, filling rate (percent portion of the demand met 

without backorder) was also noted. The fill rate in both Centralized RL and FedDRL was around 98% 

as compared to the 95% target fill rate on the design of the OUT policy. Non-federated DRL had ~96%. 

Thus all learning agents in real fact did make service better and costs lower - a sign that they were 

making costs lower not by mean of cutting inventory too low (that would have damaged service but of 

smarter inventory positioning and timely replenishment. 

Policy Characteristics: Thus, Inspecting the learned policy, we observed some of the intuitive behaviors: 

The learned FedDRL policy provides a sort of a state-dependent ordering: e.g. when the inventory of a 

DC is adequate, and its downstream sales are typical, it orders as less than the OUT level (saving holding 

cost), but when high levels of a retail sale are observed, it will quickly respond by ordering more in the 

subsequent day to pre-empt the stockout. Conventional OUT of constant S can not respond on recent 

modifications as fast. The agents had a scheduled timing of the orders to merge deliveries. We also saw 

that in FedDRL the factory usually will wait an additional day to fill the order of the two DCs (fill a 

truck) instead of producing small orders on a daily basis and filling DCs. This minimized frequency of 

transport - hence cost and emission- at a low inventory cost. This new behaviour was not specifically 

coded but it occurred as a result of trade-off cost/emission in the reward. - It was lowered through 

reduced emission due to out of shipments (the OUT baseline was sometimes forced to rush shipments 

due to stockouts which in our model was modeled as a high-emission air transport to deliver rush orders; 

RL learned not to reach that critical situation again). Secondly, overtime production that was more 

carbon-intensive was not necessary in the RL agents (this was indirectly modeled as overtime was more 

expensive and likely to use more energy). 

3.3 Sensitivity of Sustainability weight to the weight 

An important parameter in our strategy will be the value of  𝜆  spends practically on the significant value 

of emission reduction in the reward function (Eq. (1)). Up to now, Table 1 results were given at a given 

value of the lambda, which we arbitrarily selected (we selected the value of 50 per ton CO2, which is 

around 0.05 per kg, which is similar to several internal carbon pricing programs). An agent will 

otherwise maximize cost when the value of  𝜆=0; he will maximize emission reductions at a high cost 

when the value of a cost is very high. 
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Figure 3: The waterfall decomposition depicts the origin of the gains in performance. A steady decrease 

of inventory holding and stockout penalty, transportation inefficiency and production smoothing has 

cumulative effects in decreasing the baseline to the federated DRL outcome. This defines mechanistic 

validity which correlates algorithmic learning with tangible supply chain levers. The negative 

monotonic contribution of each is consistent with statistically significant decreases in every specific 

component of the cost showing that global improvement is the sum of individual independent and 

significant operational efficiencies. 

To find the outcome variations with various settings of the parameter of the form, Table 2 was prepared. 

We tried lambda in the following values: 0, 20, 50, 100 (in in dollars per ton of C02). These are the 

situations of no action regarding carbon and the situation of severe punishment. Each of the Federated 

DRL agents was re-trained (to convergence) and their performance assessed, in response to each of the 

tritiums of lambda. 

Table 2. Impact of sustainability weight 𝜆 on cost and emission outcomes (FedDRL policy) 

𝝀 (cost of CO₂) Total Cost (\$) Emissions (kg 

CO₂) 

%Cost Δ vs 𝝀=0 %Emission Δ vs 𝝀 0 

0 (ignore emissions) \$1,345,000 74,800 – – 

20 (low weight) \$1,352,200 73,100 +0.5% -2.3% 

50 (moderate, 

default) 

\$1,369,500 72,500 +1.8% -3.1% 

100 (high weight) \$1,410,000 69,400 +4.8% -7.2% 

Note: FedDRL post-training evaluation given the administration of specific value of lambda. USD per 1000 kg CO2 (ton). 

Table 2 Interpretation: In the case that the agent has a =0, then the agent is economically efficient and 

does not care about the emission. We observe the lowest possible cost achieved (approximately, 1.345M, 

interestingly, it is similar to the centralized RL cost above) but the emissions are only 74,800 kg. That 

coming will be less than the 82,300 kg of the OUT-base emission since most of the cost-saving activities 

also cut down emissions. But in the absence of a carbon cost the agent will opt to pick an option which 

is cheaper but dirtier in case it exists. One example of such a trade-off in our model was expedited 

shipping: in that case, when we eliminate the carbon penalty, sometimes the policy employs a little more 

of the fast transport to avoid the cost of possible backorder, a bit of which increases the emissions. - The 

larger the value of the parameter, the greater the amount of the policy changes to the low cost of the 

emission. An example is the increase in cost by a percentage of about 1.8 at the same time the emission 

decreased by a percentage of approximately 3.1. The cost at the high price of carbon one hundred dollars 

per ton, in other words, the price at 100, is slightly high by about 4.8 percent of the pure cost-optimal, 

although the emissions are considerably less, at 72 percent. This means that a large carbon tax will not 

reduce the emissions more, the cost will begin rising at a steeper rate. The dynamics involved do not 

provide the association between carbon price and reducing emissions but overall we notice that a 

medium carbon price (50) would carry out the majority of the emission cuts with minimum cost 

consumption, and that a very higher cost carbon price (100) would decrease the emissions yet with an 

enormous cost. We mostly used the case of the lambda=50 which seems to be a good balance between 

the two objectives. The current emissions stand at 72.5k, approximately 11.9% below the baseline 

(Table 1) and the cost was at 13.7% below the baseline. At a September 9.8k kg CO2 reduction with a 

value of, say, of 250/ton, it will save about 250 at about 490 at a small increase in actual cost versus0.02 

lower case of the societal cost than at September 0.02. That is, at an internal price of a carbon of 50/ton, 

the supply chain will have it actually spend 24.5k to avoid approximately 2.3 tons of CO2 (applying a 

marginal abatement of 1/10.65k, which is not cost-effective in most cases but at the regulatory or 

corporate compulsion may work). It costs it an extra 65k to abate about 5.4 tons (which costs it around 

12k a ton) at the 100 th wavelength. - The point here is that through varied choice of a specific factor, 

the so-called lambda, the managers are able to control the learned policy along a Pareto frontier of costs 

versus emissions. In case sustainability is a consideration, setting a high value of the value in the form 

of the parameter that produces a strong reduction in emissions, compared to cost minimization would 
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result, at a certain cost. When cost is king, you can set a low or zero cost of the performance and with a 

bit of efficiency, still achieve some emission reduction as it happens to be the side-effect. 

There were some interesting differences in the policies at greater values of the parameter, e.g., at the 

value of 100 the policy resulted in higher inventory levels on average (to prevent stockouts and thus 

prevent emergency production or shipping which were highly emitting). It also preferred routing to a 

greater rotation by some ground transportation over periodic usage of air freight (but not at the cost of 

accepting a stockout once) even though it was costly, but reduced inventory emissions. Thus was a very 

green policy content to accept a few customer orders not being met instead of flying - since our 𝝀 =100 

would have been national in either case strongly penalizing the air freight costs. The question that that 

is acceptable or not is dependent on the priorities of a company; it shows the strength of RL to identify 

non-intuitive strategies with various weights in objectives. 

To investigate how the suggested federated deep reinforcement learning framework is sensitive to the 

sustainability prioritization, a l-variation experiment has been carried out by the systematic variation of 

the emission penalty weight in the reward function. It was tested in various l conditions that represent 

cost dominant, balanced and sustainability dominant regime keeping other training and operational 

parameters constant. In successive simulations with growing l, the amount of carbon emitted decreased 

steadily and monotonically, and the overall cost increased predictably, which indicated a predictable 

and recognizable trade-off than policy change on a fluctuating basis. The comparison of the outcomes 

in a statistical comparison between the l settings found that significant differences among the costs and 

the environmental outcomes were in place (p < 0.05), with no substantial intermingling in the 

performance distributions, which allowed concluding that l is an effective and viable control parameter. 

The outcomes affirm the capability of the framework to manoeuvre the economic-environmental Pareto 

frontier in a principled and tunable way, which adds to the suitability of the framework in the 

sustainability-conscious decision-making related to supply chain. 

 

Figure 4: This candlestick trade- off chart demonstrates the multivariate cost-emission trade-off 

assuming different weights of sustainability (l). As is indicated by candlestick envelopes, federated DRA 

clearly has stringent performance limits even though the central tendency moves to lower emissions 

with an increase in l. The fact that ranges have been widening under control means controlled risk and 

not instability. The fact that the regular movement of medians with little overlap in l values are 

statistically supported documents that a significant and controllable policy reaction is present and that 

the framework can be relied upon to guide profitable and economic-environmental Pareto frontier 

navigation, as opposed to inconsistent and uninformed trade-offs. 
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3.4 Federated Learning and Collaboration Role. 

In order to confound the confounding variable of the federated learning mechanism, we perform an 

analysis on collaboration and independent training. We already had a comparative study between 

Federated vs Non-federated DRL in Table 1 and federated performed better. This is where we take a 

step further: How fast are the agents in learning in each regime and the number of agents participating 

in it? 

Learning Curve Figure 5 would depict the process of training.The global reward (negative cost) of 

FedDRL approach was improving faster during the initial 50 rounds and then slowed down slowly with 

the round approximately 150. The rewards of independent DRA agents, on the contrary, did not increase 

as fast and did not reach the same high level. As an example, in 50 rounds of training the federated 

global model had already realized the best and independent agent after 200 rounds. It means that it 

converges more quickly to federated learning, during which all the agents are actually gaining the 

experience of every agent (in this case, 7 agents) as the knowledge is shared. Practically, in situations 

where data gathering or simulation duration is a bottleneck, the federalized learning can attain a high-

performing policy with a significantly lower wall-clock time, or iterations, of using simultaneous 

learning. 

 

Figure 5: This learning-curve comparison plot will help in demonstrating the learning processes and 

convergence pattern of federated and non-federated deep-reinforcement learning in the supply chain 

environment. There is a significantly steeper increase in global reward in the federated DRA curve in 

the early training, plateauing at the point of almost an optimal value after roughly 150 rounds, compared 

to the gradual improvement and reaching a low level of reward in the standalone agents. Statistically, 

the accelerating increase and early stabilization is more efficient when dealing with aggregate 

parameters at the level of different agents, as the sample efficiency increases and the variance of policy 

changes diminishes. The distinct distance between curves during training reinforces the importance of 

collaboration as it demonstrates that federated learning is superior having less iterations. Substantially, 

this establishes the fact that joint learning representations on distributed digital twins yields faster 

convergence and operationally stronger operational policies as compared to isolated learning, without 

sharing raw data. 
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Number of Agents Effect: Similarly, to see what collaboration can bring, we did federated learning with 

a sub-sample of agents. As an example, we allowed only the two DCs and the factory to be federated 

(and maintained retailers as streams of externally given demand not learning). That brought some 

advantage but not so much - a reduction of costs was on the order of 10% as compared with 13.7% in 

case retailers were also involved. In contrast, when we federated retailers and not DCs, the 

improvements were lower (~ 8 percent). The entire chain cooperation was the most successful. This 

implies that end-to-end learning (including all echelons) is significant in order to have all the 

interdependencies. It also implies diminishing returns: adding the last small node will not add much, 

but adding the big levels certainly will affect it. 

Cross-Learning: It is one of the benefits, another, of federated learning: even agents operating in 

distinctly different environments can gain knowledge of the patterns of others. In our environment, the 

two DCs were a bit dissimilar with regard to the demand profiles (because demand profile in one region 

was slightly higher in the case of our simulation). A non-federated strategy would make a few variations 

of policies concerning each DC. In the case of federation they are left with a common policy that has 

the strength to support both the profiles. As we saw, the poorly performing DC (with the more volatile 

demand) had an advantage by borrowing some routines of the other (with the more stable demand) such 

as keeping some safety stock level, which it could not have improvised on its own because of noise. In 

the meantime, the policy of the other DC was somewhat more conservative than would otherwise be 

the case, due to access to the volatile partner data. The overall net effect was better done - an averaging 

of the policies can prevent over-specialization to the idiosyncratic local conditions. This can be 

compared to the regularization in machine learning: federated averaging added a regularizing effect 

which made no agent improve its results on its local demand pattern.  

Data Privacy: It does not explicitly create the result numerically, but I think it should be mentioned: The 

federated model did not involve the exchange of raw demand or inventory information among agents. 

This is a tremendous advantage in terms of contexts of these being different companies. It recommends 

the possibility of even rivals within a supply chain working together to eliminate waste (emissions, cost) 

via a trusted third party who adds up their model changes. As an example, various suppliers might invest 

back-end impartial models in forecasting logistics delays or transport consolidation moderation that 

allows everyone benefit, and at no cost to disclose their respective volumes of supplies. This is in line 

with the new perspectives that FL has the capability of facilitating SupplyChain 5.0 - high connectivity, 

AI-assisted, but privacy preserving networks. 

Strongness against non-IID Data: In federated learning literature, it is a typical issue that different clients 

are characterized by highly divergent data distribution (non-IID), and the global model can be prone to 

oscillate or fail to represent any of the clients. We have some non-IIDs (i.e. one of the stores can always 

have higher demand than the other). To reduce problems, the input values were normalized (the state of 

each agent was normalized according to its own history (average and standard deviation), thus, e.g. the 

state of inventory is a level that is measured using demand standard deviations). This assisted in 

rendering the information of various agents more analogous to the neural network. This led to success 

of the global model to the benefit of all agents. Individual performance of the agents was checked: the 

costs were lower than those of the individually learned agents. Freeloading type was not present where 

one agent loses out to federation. This is significant to a pragmatic adoption - they have to have an 

advantage to enroll in such a scheme. 

Statistical Confidence: To be sure that our outcomes are not just a result of luck, we ran several random 

demand scenarios (altering random seeds and, moreover, attempting our hand at a scenario including 

trend and seasonality). FedDRL had a record of being better. We have also used paired t-test of cost 

result of FedDRL and Non-fed DRL in 30 cases of matched demand, the t-test result is t=5.73, p < 

0.0001 indicating a significant difference. The same with the difference on emissions. 
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4. Discussion 

In the results provided above, it is possible to state that by means of a federated deep RL architecture, 

which utilizes a digital twin, the sustainability and efficiency of the supply chain can be significantly 

enhanced [24-26]. We are talking of certain more comprehensive implications: 

Regarding Sustainability: The possibility to decrease the emissions by approximately 12 percent without 

any capital investment (more intelligent operations) is rather influential. This strategy basically 

identifies operational efficiencies (such as streamlined inventory and transport application) which 

amount to reduced fuel consumption and wastages. Practically, these types of reductions may assist the 

companies in adhering to the regulatory policy (such as an emissions trading or a carbon-tax case). It is 

also interesting to note that most of the cost-saving policies also reduce emissions meaning a 

combination of both green and lean precepts [27,28]. Using federated learning it is possible to 

implement them at a multi-firm level - say, a coalition of companies might jointly train an agent to 

minimise not only their own cost, but also the environmental footprint of the entire chain, a problem 

that would historically have been the remit of central coordinators or market mechanisms [19,29-31]. 

On Technology Adoption: This would involve a number of technologies being integrated to complete 

the implementation of this framework in a real supply chain [32,33]. The digital twins of supply chain 

nodes should be created (some firms already employ simulation and digital twin programs of 

warehouses or factories) [34-36]. And those twins are to be linked (which is becoming more and more 

possible with internet of things and cloud-based service which binds data together). Then, AI training 

pipeline will have to be executed on the twins - potentially, cloud or edge computing infrastructure - to 

train the RL agents [37-41]. The federated learning would involve the use of a coordinating server which 

may be run either by a neutral party or by a consortium. The data privacy and trust is important; such 

methods as secure aggregation (encryption of updates and only sum disclosed) may be utilized. These 

limitations, to the best of our knowledge, make near-optimal performance achievable. 

Scalability: The number of agents that we have used is 7, and that is manageable; what about 100 

suppliers? The method of federated learning has been shown to go to very large numbers of clients (e.g., 

thousands of phones in Google FL). It could pose a challenge in supply chain in that the environment 

of each client is either more expensive or sluggish to simulate or run. Training might be sluggish, in 

case of a complicated simulation which each of them has to perform. Nevertheless, environment 

simulations can be paralleled. Moreover, we envision the future in which supply chain digital twins 

could always be in operation in any case to monitor - it could be asynchronous to piggyback RL on them 

and propose recommendations in real-time. There is still research being done in multi-agent RL at very 

large scale; methods such as hierarchical RL may be required (e.g. one agent per region taking charge 

of many of the stores implicitly, etc.). 

Behavior Transparency: Black box nature of learned policies is one of the problems of deep RL. 

Explainability is important to the managers to have trust on such autonomous decisions. Digital twins 

can be useful in this case: one can ask the twin the RL policy vs a baseline to discover how it responds 

to different situations, and intuition is formed (such as it happened in our case, we noticed that it gathers 

shipments). It is possible to explain with references to visualization of twin states and actions that the 

AI orders less now because it predicts low demand tomorrow because of the tendency, etc. Certain 

reinforcement learning algorithms (such as the extraction of rules in neural networks) can also be 

considered in order to produce human-readable policies although not trivial with the case of continuous 

spaces. 

Limitations: It will be appropriate to mention that our simulation is stylized. Actual supply chains are 

more complexly uncertain (e.g. supplier reliability, transportation failure, multi-product interactions to 

capacity). That would have to be addressed in the RL, and may require more complex neural network 

structures (such as recurrent networks (time dependencies) or attention (multi product). In addition, any 

simulation-based training makes one wonder: will the policy be effective in the real system in case the 

simulation is not perfect? This is the sim to real transfer problem. In this case the fidelity of the digital 

twin is important. In case the twin is correct, the policy will be efficient; otherwise one may have to 
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resort online learning or tweaking with real data. Online federated learning is possible i.e. as each 

company works and acquires actual data, then with time they update the global model to conform to 

reality. This may render the system to be self correcting. 

Strategic Issues: Federated learning in supply chains may also have strategic challenges: businesses 

may not desire even an AI model with implicit knowledge about their business to be located externally. 

Such techniques as differential privacy (noise on updates) can respond to that at some accuracy cost. 

Incentives is another factor - when the result of one company is less favorable, it may be forced out. 

The design of mechanisms that guarantee equitable benefit sharing may be significant (probably side 

payments or cost-sharing plans hinged on the result of the model). The objective of the central planner 

used in our analysis was benevolent (sum of costs). As a matter of fact, every company is concerned 

about its profit. It might be possible to extend the framework by scaling the reward of each agent or 

through a process of bargaining. But when savings on costs are attained, then all can usually share in 

case contracts are made (e.g. cheaper logistics prices might be shared out in part). 

The findings constitute a good demonstration of a potential breakthrough which AI-guided coordination, 

based on the digital twins simulations and federated deep learning, can break numerous conventional 

limitations in SCM (such as the absence of visibility and trust) to reach improved performance by all 

parties and the environment. It coincides with the trending changes in academic literature and industry 

- integrating Industry 4.0 digital twin solutions with sophisticated AI algorithms and joint data science 

(the term Industry 5.0 is also used in the literature when the aspect of humanity and environment is 

prioritized). Our work is not an exception as it shows quantitatively the possible gains and presents a 

framework which may be improved and applied in the practice of the real supply chain. 

5. Conclusion 

The proposed paper details an interconnected approach to sustainable supply chain management as 

federated learning and deep reinforcement learning are used in a synergistic way with digital twin 

technology to allow joint and privacy-friendly optimization between dispersed supply chain 

participants. The simulated three-echelon supply chain example systematically shows that the proposed 

Digital Twin-Enabled Federated DRL statistically significantly can reduce the total logistics cost by 

13.7 percent and carbon emissions by 11.9 percent compared to a traditional policy, while it performs 

in many percent of the way an idealized centralized planner typically performs. The findings also 

indicate that federated learning is always superior to the independent reinforcement learning and that, 

agents converge faster and achieve an enhanced policy through shared learned representations and not 

through raw data, an aspect of the importance of cross-organizational learning under the privacy 

constraint of data. The sensitivity analysis of the sustainability weighting parameter demonstrates an 

interpretable and constant cost-emission trade-off, such that moderate focus on the reduction of carbon 

will produce substantial environmental advantages at a minimum economic cost, and strong focus of 

sustainability will produce a deep cut of emission at a more and more expensive expense and offer 

companies a versatile modulation of the control of operations in relation to the sustainability objective. 

Methodologically, the contribution of the work to the literature is its focus on being one of the first to 

model federated reinforcement learning to coordinate the supply chain between multiple firms, closely 

linking learning agents with the digital twin environment to drive continuous simulation-based 

optimization, and integrating carbon emissions into the decision-making goal instead of taking 

sustainability as the post hoc evaluation measure. The results indicate that this kind of architecture has 

the potential to be more helpful in creating digital twins of adaptable and smart supply chain tools that 

are able to maintain both efficient and environmentally friendly operations through management 

techniques like smoothing production and logistics synchronization. As per the practical side, the 

attained benefits show great prospects of practical implementation, specifically by means of a gradual 

implementation whereby companies can initially streamline the internal processes and then form a 

federation involving the partners with whom they are associated with, which results in increased levels 

of services coupled with lower emissions and greater resilience. Although the issues of data security, 

incentive consistency, and infrastructure funding persist, the quantitative benefits of the proposed 

framework that were seen in this research would indicate that this proposed framework represents a 
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valid and timely avenue towards organizations trying to meet the stricter requirements of regulatory 

frameworks and sustainable goals without causing major operational performance changes. 

Despite the fact that the given case study is good evidence of the efficiency of the offered framework, 

this is a controlled experimental environment, and multiple areas of future research appears naturally. 

Future research needs to assess the framework to more massive and complex supply chain structures, 

such as multi-product and multi-modal, and situations involving highly uncertain situations and 

disruptions such as port shutdown, natural disasters, or geopolitical shocks. Another avenue that is 

promising is the extension of the framework to risk management, such as the addition of reward 

structure components such as service level guarantees, downside risk measures, or more attractive 

reinforcement learning formulations that consider worst-case risk. More so, human knowledge systems 

and learning-based systems should also be explored further, and especially so in accordance with the 

aspects of Industry 5.0, which are human-centric and socially responsive, introducing human input can 

guide to keeping the learned strategies operationally viable and within stage with tacit business rules 

that are challenging to professionalize. Existing methods: The idea of transfer learning in similar supply 

chain scenarios has a potential to enhance scalability whereby policies which have been trained in one 

network or market can be transferred to another with minimum retraining with federated learning 

potentially extended to a group of firms operating within a given industry to jointly identify useful 

practices through suitable anonymity and governance structures. Algorithmsically, one might consider 

a more advanced multi-agent reinforcement learning model in the future addressing more specific 

models of strategic interaction in a densely coupled system, e.g. mean-field or opponent modelling 

approaches. Lastly, the game-theoretic nature of federated reinforcement learning in supply chains 

should be analyzed systematically, specifically, in the context where competing companies have some 

partially conflicting goals; it may be necessary to combine the principles of incentive alignment and 

mechanism design with the learning framework. 
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