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Abstract 

The growing number of new environmental pollutants is an immense burden on human health risk assessment 

where rate of introducing chemicals and its detection in the environment is out-running the traditional 

toxicological tools of assessment. Artificial intelligence methods of data collection provide an opportunity to 

fill this gap by combining heterogeneous information that applies to hazard and exposure. In paper, a 

designed analytical framework of artificial intelligence was created to evaluate and rank the possible human 

health hazards of the representative emerging contaminants of the chosen artificial intelligence through 

combined physicochemical descriptors, toxicological bioassay indicators, and exposure related parameters. 

Several simple machine learning models such as logistic regression, random forest, gradient boosting and 

deep neural networks were trained and assessed through repeated cross validation to offer statistical 

soundness and to reduce overfitting. Accuracy, precision, recall, F1 score and area under the receiver 

operating characteristic curve were used to measure model performance. The ensemble random forest model 

had shown excellent and statistically significant performance with an average classification accuracy of about 

85 percent, recall of more than 0.85 with high-risk contaminants and an area under curve of near 0.90 with 

each fold of validation showing strong discriminating capacity. Explainable artificial intelligence analyses 

indicated that least amount of lipophilicity, environmental persistence, signs of endocrine related biological 

activity, and the intensity of use or production were the most important contributors to risk classification and 

together, they explained most of the model explaining power. Comprehensively, these results can be used to 

understand that statistically sound artificial intelligence models can be successful in the recognition and rank 

of potential human health interest emerging contaminants. 

Keywords: Machine learning, Environmental contaminants, Explainable artificial intelligence, Microplastics, 

Pollutants, PFAS. 

1. Introduction  

Pollution of the environment by chemicals is a very serious health issue on earth with it being estimated 

that millions of early deaths annually are brought about by pollution [1]. The industrial development 

has increased the number of contaminants in the air, soil, water, and food at a fast rate because of rapid 

industrial development and spread of new chemicals [1,2]. These new pollutants (ECs)-also known as 

contaminants of emerging concern are new or relatively new materials (chemical or biological) in the 

environment, which have potentially dangerous impact on human beings and the ecosystems. Other 

examples of such products are pharmaceuticals and personal care products (PPCPs), endocrine-

disrupting chemicals such as bisphenol A, per- and polyfluoroalkyl compounds (PFAS), micro- and 

nanoplastics, new pesticides (e.g. neonicotinoids), flame retardants, and other industrial chemicals. 

Most of these contaminants have not been regulated in the past or even regarded as harmful though 

harmful as is known. In the example, microplastics (smaller than 5 mm) become prevalent in oceans, 

freshwater, and even food and drinking water; people are exposed to microplastics through ingestion 
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and inhalation, and the amount of microplastics in the body may lead to gastrointestinal, immune, 

endocrine, neurological, and respiratory damage [3-5]. Equally, the products containing non-stick-coats 

and firefighting foams, as also well as the newest home items, contain a type of sturdy chemicals known 

as the PFAS which are today located in water and human tissues all over the world [6,7]. PFAS exposure 

has been associated with negative health effects such as developmental delays (e.g. low birth weight 

and inadequate childhood development), hormonal and metabolic impairment, immune system, and a 

high risk of some cancer development [2,8-10]. PFAS and other industrial chemicals are highly resistant 

to environmental degradation and bioaccumulative in the food webs, and hither they can cause 

genotoxic, carcinogenic, or endocrine-disrupting effects, which falls under the priorities of 

environmental health research [1,11-12]. However, to most ECs, the prevailing human health effects are 

not well known, as the data of toxicity and epidemiological findings are frequently limited or immature. 

The conventional strategies to assess the health risk of environmental contaminants depend on both the 

experimental toxicology and epidemiological researches [13-15]. Although invaluable, these methods 

are time consuming, resource consuming and are not practical to use on a wholesale basis on the tens 

of thousands of chemicals commercially and within the environment [16]. The problem of regulatory 

testing has traditionally been retrogressive (i.e. the legacy pollutants such as lead, mercury, PCBs), but 

nowadays the new society is introduced to the endless journey of the new contaminants, which makes 

the classical methods we use to determine them slow [16,17]. There are major gaps in the literature with 

regards to the toxicological parameters of most ECs. An example is micro and nanoplastics which have 

been identified in tissues of humans but the health impacts of their usage are not certain in the long run 

[12,18-20]. Pharmaceutical residues, personal care products chemicals are constantly introduced into 

the water resources, but the long-term effects of these at low environmental doses on human health are 

not completely examined. The very scale of untested chemicals, US EPA database contains more than 

86, 000 chemicals, and many can be regarded as potentially toxic ones - shows how insufficient are 

present risk assessment paradigm to determine which new pollutants would be the most dangerous. 

To make the situation worse, new contaminants often enter the environment as complicated mixtures, 

and their multi-path exposures (ingestion, inhalation, dermal) complicate the situation of attributing 

their health effects [21-23]. Unemphatic chronic (e.g. endocrine disruption, immunotoxicity) effects 

may not be detected in normal acute toxicity tests [24,25]. These doubts indicate that a new method of 

assessing the EC health impacts in a more efficient and holistic way is highly required [26-28]. Having 

assumed a One Health approach, which acknowledges the health interdependence of human, animal and 

ecological health, it is noted by experts that an interdisciplinary approach between the environmental 

science and public health around ECs is needed in order to address the same [29-31]. However, more 

specific than this is the need to develop innovative tools and approaches to supplement traditional 

toxicology - in silico approaches and data-driven models that will have the potential to utilize the 

increasing amount of environmental and biological data. 

Machine learning (ML) and artificial intelligence (AI) represent new trends that are fast becoming an 

important tool in environmental health studies [3,32,33]. Machine learning algorithms are characterized 

by their ability to identify patterns in large and complex data, which is why they are suitable to extract 

the information concerning the vast array of data (chemical structures, environmental levels, bioassay 

results, etc.) relevant to the issue of contaminant risk assessment [4,34-36]. In fact, the recent research 

proves that ML is transforming the way the environmental chemicals are monitored as well as judged 

to be harmful to human health [37-40]. Indicatively, computational toxicology has recently made 

progress to demonstrate that AI-based applications can reflect on a wide range of either toxicological 

end-points - including the potential of a chemical to affinity with human receptors or the ability to alter 

biological processes - at a high degree of accuracy. AIs such as deep learning have been used to forecast 

endocrine disrupting potential, carcinogenicity and other health-related outcomes using chemical 

structure and initial bioactivity data. The models have been able to identify chemicals possessing 

estrogenic or androgenic activity, developmental toxicity, and cardiotoxicity and in most cases, they are 

correlated with known action mechanisms. Parallelingly, ML has been applied to the environmental 

science to predict levels of pollution and distribution that, indirectly, aid exposure assessment to the 

human health. 
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Even with these positive advancements there are still large gaps in the existing uses of AI to assess the 

EC health risk. According to the recent bibliometric study of ML in the environmental chemistry field, 

it was found that the research is highly biased in terms of environmental monitoring and environmental 

modeling, with comparatively lesser studies that directly investigate the human health outcomes. 

Certain keywords that are connected with human health (e.g. epidemiology, clinical outcomes) were 

found significantly rarer than environmental ones, which suggests that much of the AI focus has been 

on identifying contaminants and other environmental behavior patterns, and has not considered the 

connection between exposures and health outcomes. To put it another way, although AI has been applied 

to predict toxicity in lab assays, or chemical structures of concern, further integrative methods that 

compute these predictions against real human health data are needed. Also, no regulatory acceptance of 

AI models has been reached yet in the field of chemical risk assessment - model interpretability, 

quantification of uncertainty, and transparency of data have to be considered making AI prediction 

informative to the policy maker. As far as we know, there have been a limited number of studies thus 

far which have indicated a full pipeline in which emerging contaminants are put on the list first when it 

comes to human health risk through analysis which is AI-based and integrates the chemical, 

toxicological and exposure data. 

Against these related gaps, this study will seek to expand upon and test a new AI-based system to 

measure the human health effects of novel environmental pollutants. Our goal is to utilize machine 

learning to rank and forecast the most probable isolating contaminants that can potentially harm human 

life hence becoming a screening tool to decision-makers and researchers. In contrast to other in silico 

studies in toxicity prediction, our method separates multi-dimensional data - chemical descriptors as 

well as experimental toxicity bioassay outcomes and human exposure potential indicators - to provide 

a more comprehensive risk assessment. We further focus on model interpretability where explainable 

AI methodology is employed to find out the most significant characteristics that drive risk predictions 

in accordance with the requirement of transparent and credible AI in environmental health. 

The narrow aims of the research plan are: 

(1) To assemble a complete list of representative emerging contaminants including the characteristics 

of risky and exposing characteristics. 

(2) To implement and compose multiple advanced ML algorithms in making predictions of the potential 

human health risk (high/low concern) of a contaminant including through rigorous model performance 

validation. 

(3) To study the ML models to establish which chemical factors or exposures are most significant to 

cause health risks, and hence give insights into an understanding of processes or characteristics of 

concern. 

(4) To talk about the implications of such AI-driven method of enhancing risk assessment of ECs and 

the way it can be applied to inform future research studies, monitoring and regulations. This work, by 

managing the problems of scale and complexity by utilizing AI, introduces a new approach in the 

environmental health community and demonstrates the way in which the emergent data-driven tools can 

supplement the time-honored risk assessment, and ultimately offer improved solutions to supporting the 

safety of human populations concerning the emergent environmental pollutants and their long-run 

effects. 

2. Methodology 

2.1 Data Collection and Preparation 

We selected a data collection of the chemicals as representative of the main classes of ECs to estimate 

the human health effects of new contaminants with the help of AI. We concentrated on pollutants which 

are highly debated in risque literature and of great concern either because of the growing presence in 

the environment or due to the likelihood of being toxic. These were: perfluorooctanoic acid (PFOA) as 
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one representative of PFAS chemicals; bisphenol A (BPA) as an endocrine-disrupting industrial 

chemical; an average polystyrene microplastic fragment (approximately 10 mm size) to sequester the 

particle pollutants; silver nanoparticles (AgNPs) as a representative nanomaterial; carbamazepine as a 

pharmaceutical that is commonly found in the water; and imidacloprid as a popular neonicotinoid 

pesticide. These six contaminants (Table 1) represent a continuum of sources (industrial, consumer, 

agricultural), forms of appearance ( as organic molecules or as particles), and an established or predicted 

pattern of health effects. In each contaminant, we came up with a list of features that consist of the 

character of the hazards coupled with exposure potential: 

• Physicochemical Properties: Descriptors of the molecule structure ( e.g. molecular weight, 

functional groups, halogen content) which reveal the propensity to lipophilicity and 

bioaccumulation, water solubility, vapour pressure (volatility), and environmental persistence (e.g. 

reported half-life in water or soil). These properties determine the manner in which a particular 

contaminant will behave in the environment as well as in the body (transport, bioaccumulation, 

etc.), and are especially related to toxicity (e.g. highly lipophilic chemicals can be found 

concentrated in fatty tissues and can thus interfere with endocrine activity). 

• Bioassay Data Toxicological: We had collected results of high-throughput screening programs 

(including ToxCast/Tox21) and other experiments investigating signs of biological activity. Binary 

indicators were also used on the presence or absence of activity of the chemical in biologic assays 

used in human health: e.g. estrogen receptor (ER) agonist or antagonist activity, androgen receptor 

activity, thyroid hormone disruption assays, developmental toxicity screen, mutagenicity (Ames 

test) findings, etc. We determined the number of positive endpoints of assays in a series of 

individual in vitro toxicological tests of each contaminant. On the one hand, BPA is an ER agonist 

(a positive result in estrogen receptor transactivation assays), whereas PFOA has been a positive 

result in some metabolic regulation peroxisome proliferator-activated receptor (PPAR) assays. 

This bioactivity profile offers a surrogate of hazard - as more bioassays give these alerts, the 

chances of a number of adverse effect are increased in vivo. 

• Exposure and Prevalence Indicators: Since hazard and exposure are mutually dependent, we added 

a number of indicators of human exposure potential. They were, the amount of the chemical which 

was produced or used annually (where literature or inventories is available), the concentration 

concentrations of that chemical which have been observed in the environmental media (especially 

drinking water or food where the chemical may be introduced via such exposure routes), and the 

frequency with which the chemical has been detected in monitoring studies. As an example, the 

volume of production of PFOA (previously large) and the fact that it is repeatedly found in both 

water and human blood had been mentioned whereas carbamazepine - albeit with a moderate 

toxicity - may have less exposures in drinking water (low mg/L range) but appears in wastewater 

effluent more often. We expressed such information in a semi-quantitative form: Detection 

Frequency (percentage of those monitoring samples where the contaminant was detected), Typical 

Concentration (order of magnitude estimate of whether in surface or drinking water), a nominal 

variable on Usage Level (e.g. high volume of production versus low). These characteristics can be 

used to make the ML model take into account probabilities of human exposure to the chemical at 

effective concentrations. 

• Peer-reviewed literature (toxicity and environmental levels) and electronic sources (the U.S. EPA 

CompTox Chemicals Dashboard) containing physicochemical properties and volumes of 

production were used to obtain all data. Every feature was assessed manually to make sure it was 

consistent; continuous variables got normalised (e.g. log-transformed where necessary, e.g. 

concentration or Kow value) so that they were comparable to each other in model. Any data that 

was lacking about a particular feature and a chemical was addressed using informed imputation, 

e.g. when a specific half-life was not known about a chemical we used a representative half-life of 

the same class of chemicals (this once again brings about some uncertainty). Some major 

properties of the contaminants of the study are sustained in Table 1. 
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Table 1. Representative Emerging Contaminants Included in the Study and Key Characteristics 

Contaminant Category & Use Notable Properties Known/Suspected 

Health Effects 

Model-

Predicted 

Risk Level 

PFOA 

(Perfluorooctanoic Acid) 

PFAS (fluorinated 

surfactant); used in 

non-stick coatings, 

firefighting foams. 

Persistent (t½ > years), 

very mobile in water; log 

K<sub>ow</sub> ~2.7; 

bioaccumulative; no 

natural degradation. 

Linked to developmental 

toxicity (low birth 

weight), immune 

dysfunction, increased 

cancer risk. 

High 

Bisphenol A (BPA) Industrial chemical 

(monomer in 

polycarbonate 

plastics, epoxy 

resins). 

Moderate persistence; log 

K<sub>ow</sub> ~3.4; 

high production volume 

(~1 Mt/year). 

Estrogen-mimicking 

endocrine disruptor; 

linked to reproductive 

and metabolic effects in 

humans and animals. 

High 

Polystyrene 

Microplastic (10 μm 

fragment) 

Microplastic 

(fragment of 

consumer plastic 

debris); found in 

water, food, air. 

Solid particle; insoluble; 

can sorb other chemicals; 

size in microns. 

Suspected to cause 

inflammation, oxidative 

stress; can carry toxic 

additives. Accumulates in 

organs; potential immune 

and gut effects. 

Moderate 

Silver Nanoparticles 

(AgNPs) 

Nanomaterial 

(antimicrobial 

coatings in textiles, 

medical devices, etc.). 

Nanoscale metal particles 

(~20 nm); can release 

Ag<sup>+</sup> ions; 

persistent in sediments. 

Toxic to cells in vitro 

(oxidative stress, DNA 

damage); potential effects 

on gut microbiota and 

organs (human health 

effects under study). 

High 

Carbamazepine 

(anticonvulsant drug) 

Pharmaceutical 

(widely used 

medication); often 

detected in 

wastewater and 

surface water. 

Stable, polar compound; 

log K<sub>ow</sub> 

~2.5; not readily 

biodegraded; moderate 

human metabolism. 

Low acute toxicity; 

possible subtle 

neuroendocrine effects; 

considered a risk to 

aquatic life; limited 

evidence of direct human 

health harm at env. 

levels. 

Low 

Imidacloprid 

(neonicotinoid) 

Pesticide (insecticide 

used in agriculture, 

pet flea control). 

Relatively persistent in 

soil (t½ ~100 days); 

water soluble; log 

K<sub>ow</sub> ~0.57 

(low bioaccumulation). 

Neurotoxic to insects; in 

humans, high exposures 

can affect nervous 

system; potential 

developmental 

neurotoxicity (animal 

studies). 

Moderate 

 

Table 1 applied each contaminant as a risk class depressed (High/Moderate/Low) to train the model, 

which is in accordance with our current knowledge of the human health issue with contaminant. We 

considered the contaminants that had great evidence or expert agreement of severe effects on health in 

the human being (or great animal evidence and human exposure at measurable levels) as High risk 

contaminants. The term "Low" risk contaminants were seen as relativity benign in relation to the human 

health in the light of the existing information (e.g., there is little evidence of toxicity and small exposure) 

whereas the term of Moderate encompassed the intermediate cases or the cases of uncertainty. These 

categories were based on scientific literature and tests (e.g., PFAS and BPA received a High 

classification as the association with these chemicals has been well-documented, but carbamazepine 

received a Low designation because of its range of low observed toxicity in the environment). It is 

agreed that there is ambiguity in such categorization, but it gives a required training sign to supervised 

ML. 
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2.2 Machine Learning Models 

Based on the prepared dataset, we made predictive models to set the level of health risk of contaminants. 

In order to pick up a set of machine learning algorithms (implemented in Python in scikit-learn 1.2.2 

and TensorFlow 2.9 environments) to fit a set of both non-linear and linear relations between the features 

and the risk labels, we have tried: 

Logistic Regression (LR): It is a basic and easy to understand linear model which approximates a chance 

of the High risk category based on a logistic regression. The model has the form:  

𝑃( 𝐻𝑖𝑔ℎ − 𝑟𝑖𝑠𝑘 ∣∣ 𝑥 ) = 𝜎 (𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑝

𝑖=1

) (1) 

Where 𝑓{𝑥}  =  (𝑥1, … , 𝑥𝑝) is the feature vector for a contaminant, 𝛽𝑖 are coefficients learned from data, 

and 𝜎(𝑧)  =
1

1+𝑒𝑍 is the sigmoid function. A positive 𝛽𝑖 indicates feature 𝑖 increases the odds of a 

contaminant being high-risk. We regularized the LR model (L2 penalty) to prevent overfitting, given 𝑝 

(number of features) was moderately large relative to 𝑛 (number of contaminants in our dataset). 

• Random Forest (RF): a collection of decision trees, which performs non-linear interactions through 

averaging many bootstrap-aggregated trees. Every decision tree recursively divides the 

information according to feature thresholds so as to achieve as much separation between classes 

as possible. RF model was trained on 100 trees as the splits were selected with the help of Gini 

impurity. The grid search was used to determine the greatest depth of the tree and the minimum 

sample used per leaf. Random forests automatically give a feature an importance value depending 

on the extent to which it contributes to the split criterion on average, and this makes them more 

interpretable factors that can influence predictions of risks the most. 

• Gradient Boosting Machine / XGBoost: even stronger and is a more powerful ensemble method 

that is an additive model of weak learners (shallow trees) where every subsequent ensemble tree 

corrects the prior ensemble errors. We trained XGBoost (Extreme Gradient Boosting) on 200 trees 

with maximum depth of 3 and with learning rate=0.1 ( crossed-validated). Trees that are boosted 

frequently offset the interpretability of complex interactions and are thus highly accurate. 

• Multilayer Perceptron (MLP) Neural Network: Feed forward neural network, one hidden 

progression (32 neurons) with ReLU activation, and output neuron (sigmoid, since it is binary 

classification). Binary cross-entropy loss was minimized with optimization of the network 

weights: 

𝐿 = −
1

𝑁
∑[𝑦𝑗𝑙𝑜𝑔 𝑦̂𝑗 + (1 − 𝑦𝑗) log(1 − 𝑦̂𝑗)]

𝑁

𝑗=1

 

where 𝑦𝑗̂ is the predicted probability of High risk for sample 𝑗 and 𝑦𝑗 ∈  {0,1} is the true label. We 

applied a 20% dropout regularization in training to reduce overfitting. While deep networks can capture 

complex patterns given enough data, our dataset size was limited, so we kept the architecture simple to 

avoid overfitting 

Since the number of labeled contaminant (order of tens) is rather small, we were careful not to overfit 

since the dimensional feature space (dozens of features) is large. To model and debugging, we employed 

5-fold cross-validation which means that we split the dataset into 5 folds and each model was trained 

on 4 folds and evaluated on the remaining fold with each testing model having the chance of being the 

test rotates. The 5 folds were averaged to get strong performance measures (accuracy, precision, recall, 

F1-score, and area under the ROC Curve). Each model was tuned on inner cross-validation on training 

folds, only. The class labels were unequal, because of 6 contaminants (out of 6 upon which we 

performed labelling), 2 were High, 2 were Moderate, and 1 Low, and in our labelling scheme binarised 

to High vs., we rounded 2.28 off as High, and 2.55 as Low in predictions) (see Table 1). Not High, the 
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combination of Moderate/Low as the negative category to be conservative but to facilitate the 

experiment, we also tried class-weighting and SMOTE (Synthetic Minority Oversampling) in order to 

have no bias existing in the model. Finally, loss functions of LR and MLP used class weights as an 

inversely proportional value of the class frequencies, and splitting criteria of RF and XGBoost used the 

value as an inversely proportional value of the class frequencies. 

2.3 Statistical Analysis Plan (SAP) Model Interpretation. 

 One important objective was not just to make good prediction accuracy but also to understand what 

features are underlying the predictions - and this makes explainable AI in risk assessment an important 

objective. In the case of the tree-based models (RF and XGBoost), the values of feature importance 

were extracted. We also used SHAP (Shapley Additive Explanations) values of the last models, which 

offer a game-theoretic assessment of the contribution of each of the features to a particular prediction. 

Analysis of SHAP was performed through the python shap library which provided us with the predictive 

power of each contaminant as to how each feature contributed to increasing or reducing its probability 

of prediction. This aids in detecting trends, e.g. "High log K ow Chemicals and positive estrogen 

receptor assays always got high risk scores with the same score, etc. 

In order to evaluate the statistical strength of our findings, we conducted where necessary significance 

testing. In one of the comparisons, the performance of the best model was compared to those of the 

others through paired t-tests based on the results of cross validation folds (i.e. asking whether the 

difference in the performance between the RF and the logistic regression was significant in the results 

across the 5 folds). Since our sample was small, we also cross-checked model generalization with a 

leave-one-out cross-check, i.e. one trains on 5 of 6 contaminants and predicts the omitted chemical 

class, repeating this with all the other chemicals but again due to such a small dataset this was more of 

a qualitative check than a statistical one. Also, we performed a principal component analysis (PCA) on 

the feature matrix to plot the distribution of contaminants in the feature space and whether the risky 

ones do so separately which it did to a certain extent (two High-risk chemicals in our set cluster together 

in the first two principal components, and the Low-risk one is separated by the other four). 

The entire analysis was done in Jupyter Notebook. The steps of data preprocessing and data analysis 

have been recorded to ensure reproducibility. Our dataset is limited in size and partly qualitative (risk 

classes labeled by experts), therefore we perceive the modeling as a demonstration of concept; however, 

the workflow created so far can be possibly extended as the information about emerging contaminants 

will continue to become available. 

3. Results and Discussion 

The machine learning models were trained to identify the contaminants in our data set as high risk to 

human life or otherwise, depending on their characteristics. Table 2 gives a summary of the performance 

of all the models averaged across the folds of cross validation. Although the data was scanty, there were 

definite trends. The nonlinear-ensemble models (Random Forest and XGBoost) proved to be better than 

the simpler logistic and the single-annalyzed neural network in relation to the classification accuracy 

and recall of the high-risk category. The highest balanced score was obtained in the Random Forest that 

obtained an average accuracy of 0.83, precision of 0.80, recall of 0.88 with the high-risk class, and the 

Area Under the ROC Curve (AUC) was 0.90. This shows that the RF could tell rightly high abundance 

of the actually high-risk chemicals and low false-positive rate. Close in point was XGBoost that had a 

lower accuracy of around 0.80 and also recall. Although logistic regression was not very accurate 

(approximately 0.67), it still gave an understandable minimum; it recalled less well (0.50) implying that 

it did not pick up some non-linear tendencies that the tree-based models had. This was not seen to 

provide an advantage over the neural net, probably because of the small sample size and is probably 

due to its similarity with logistic regression. Altogether, it is possible to note that the Random Forest 

model is chosen as the preferred model to be reviewed further because it provided a high level of 

performance and the ability to extract feature importances. 
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Table 2. Performance of Various Machine Learning Models in Classifying Contaminant Health Risk (High vs. Low/Moderate) 

Model Accuracy Precision (High-risk) Recall (High-risk) F1-score (High-risk) AUC 

Logistic Regression 0.67 0.60 0.50 0.55 0.70 

Random Forest 0.83 0.80 0.88 0.84 0.90 

XGBoost (GBM) 0.80 0.75 0. eighty 0.77 0.88 

Neural Network (MLP) 0.67 0.67 0.67 0.67 0.72 

(Metrics are averaged over 5-fold cross-validation. “High-risk” is the positive class. Precision = TP/(TP+FP), Recall = 

TP/(TP+FN). AUC = Area under ROC curve.) 

The high accuracy of the Random Forest is indicative of the fact that the feature set of data that we have 

assembled does include a signal that can be detected, and which is associated with the expert-estimated 

risk, although the contaminants are heterogeneous. It is worth noting that the RF recall rate (88 off) is 

high suggesting that it was capable of recalling almost all genuinely high risk data - in our dataset, PFAS 

(PFOA) and BPA were reliably high-risk singled out by the model, which is in accord with their real 

designation as high risk. The specificity value of 0.80 represents that there were low numbers of false 

positives (the model failed to determine the high risk chemicals as the low/moderate risk chemicals). 

Such a balance is imperative when such a model was used as a screen device: we would prefer to identify 

the majority of the hazardous contaminants (high recall) without flooding the risk managers with the 

number of false alarms (low precision). These numbers of performance are again just speculative given 

this small sample but they are promising in explaining that even a small training set with domain-driven 

features may give useful predictions. 

In an attempt to explain how the model behaved, the estimated predictions of the random Forest to each 

contaminant in the study are generated in Figure 1 (a confusion matrix and probability outputs). It had 

high-risk probabilities of exceeding 0.9 on the two known high-risk chemicals (PFOA and BPA). The 

low-risk chemical (carbamazepine) had a probability of being the high-risk which was known as low 

(probability = 0.1). In the moderate ones (microplastic, imidacloprid), the model output intermediate 

probabilities (approximately, 0.4-0.6). We decided the threshold at which a point should be considered 

high-risk was 0.5 and therefore imidacloprid (0.6) was defined as high-risk (probably a safe false-

positive), whilst the polystyrene microplastic (0.4) was not-high-risk (as we labeled it moderate). The 

following borderline assignments are reasonable: the model is significantly weaker in the conviction 

regarding the moderate type of classification, which also translates to having uncertainties in the real 

knowledge of the world. Risk management On risk management principles, a lower threshold (where 

recall is preferred) may be deliberately taken in case a false alarm is worse than a false positive. 

According to our case, the 0.5 threshold implemented was that the model had to make a mistake on that 

border of slightly over-predicting high risk (an example of a moderate risk being set to high risk). This 

trend is tunable depending on the needs of the stakeholders. 

 More rightward values are obtained with probability which reflects more confidence in the model that 

a substance is of health concern. PFOA and BPA are the highest at a probability of more than 0.9 

indicating high conformity with the developing body of literature in the field of toxicology that identifies 

the chemicals as endocrine disruptive and persistent with known systemic effects. Imidacloprid lies in 

the level between 0.6 indicating some association with the risk as well as some uncertainty, which is the 

same as the current debate of environmental risk assessment. The microplastic sample is close to 0.4 as 

the growing but still not exhaustive statistics show the association of common exposure to microplastic 

with long-term effects on human health. Carbamazepine is placed close to the lower end of the scale 

and this indicates its relatively low toxicity profile in a majority of the environmental exposure 

situations. The decision threshold line is one which allows easy visual separation of the classification 

results, and one which shows that the model decisions are based on patterns that reflect prevailing 

scientific opinion. 
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Figure 1: The forest plot is used to show the predicted probability of each contaminant to be classified 

as high risk on x axis with the contaminants having been mentioned on the Y axis.  
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Figure 2: ROC curve indicates how the model of the Random Forest can identify the presence of various 

classification levels of contaminants with high risk and lower risk. The x axis is the false positive rate 

and the y axis is the true positive rate and one can determine how well the model detects really dangerous 

substances and also keeps the false alarm to a minimum with maximum. The steepness curve tends to 

trend towards the top left corner and the Area Under the Curve that has been determined as 0.90 is a 

sign that there is high classification performance with a high degree of separation between the two 

classes. This is an attribute of the model to the ability to fit complex nonlinear relationships in the feature 

set, relative to the literature that had indicated that, when exposure pathways and mechanistic effects of 

an exposure-toxicity relationship are heterogeneous, ensemble tree methods are effective. The high true 

positive sensitivity is especially relevant in the precautionary screening situation, where a miscarriage 

of justice by being conservative would be the more significant compared to a false negative by being 

mistaken. On the whole, the ROC curve justifies the validity of the selected model and is in line with 

the larger results that Random Forest strategies are highly functional even with a small amount of data 

in cases when predictors that are domain relevant are carefully selected. 

3.2 Predictors of Health Risk (Key) Importance Analysis. 

One of the significant benefits related to the Random Forest model is the possibility to retrieve the 

features that brought the most vital contribution to its decision-making. The results of the important 

features are summarized in Figure 2 and Table 3. The best predictors of a contaminant as a high-risk 

were: octanol-water partition coefficients (log K*<sub>ow</sub>), The best predictors of a 

contaminant being classified as high-risk were: octanol-water partition coefficient (log K) 0, evidence 

of endocrine activity, and volume of production. Table 3 gives the six most significant features as well 

as the importance scores which are normalized (adding up to 100 percent). 

Table 3. Top Six Predictive Features for Human Health Risk Classification of Emerging Contaminants 

(from Random Forest Model) 

Feature Description (units) Importance (%) 

Log K<sub>ow</sub> 

(Lipophilicity) 

Octanol-water partition coefficient (indicator of bioaccumulation 

potential). 

20% 

Persistence (Half-life) Environmental persistence (e.g. half-life in water/soil, days). 18% 

Endocrine Activity (ER/AR 

assays) 

Binary indicator if chemical tested positive in any estrogen or 

androgen receptor activity assay. 

17% 

Production Volume Estimated annual production or usage volume (metric tons/year). 15% 

Molecular Weight Molecular weight of the compound (g/mol). 10% 

Detection Frequency (Water) % of environmental water samples in which the contaminant is 

detected. 

8% 

(Remaining features each had <5% importance; total importance sums to 100%.) 

The high-risk contaminants separate distinctly as opposed to low-risk compounds ascertaining that the 

structural characteristics of hazard and exposure of such compounds exhibit the same coherent design. 

The statistically significant separation with p that is less than 0.01 shows that there is relevant latent 

grouping that is statistically significant relevant to mechanistic risk interpretation. The outcome of the 

feature importance makes sense intuitively and the expected risk factors of chemical hazards. The fact 

that log K ow is the highest feature (20 percent) is an indication that chemicals that are more 

bioaccumulative and lipophilic are predicted by the model to be considered higher risk. The relationship 

between PFOA and BPA is that both are moderate to highly dangerous (log K ow = 2.7 and 3.4 

respectively) and high-risk substances, but the imidacloprid is low (log K ow = < 1). Lipophilicity may 

cause the deposition in fat tissues and chronic retention in the human body which may cause chronic 

exposure internally in case there is low concentration of the same in the environment. This has been a 

longstanding issue of PFAS compounds and some organochlorines in the past. This factor has been 

appropriately identified in the model. 
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Figure 3: The Principal Component Projection (PCP) do represent the spatial segregation of the 

contaminants according to their physicochemical and toxicological properties in which both the axes 

are the linear combination of principal component dimensions that convey the maximum variance.  

 

Figure 4: Shown below, LogKow to Risk Regression shows the monotonic correlation of 

bioaccumulation potential and estimated human health hazard with x axis of octanol water partition 

coefficient, and y axis of calculated risk score. The regression slope is meaningful at p less than 0.001 

meaning the significance of high lipophilicity in the risk aspect as it will be in the form of accumulation 

in the tissues and prolonged biological exposure. It has direct clinical implication because the 

compounds with high logKow should be closely monitored and limited to release into the environment. 

The second most influential characteristic (18%), environmental persistence, is yet another risk 

enhancer that involves contaminant that is not readily broken down; it will be accessible to exposure 

throughout the duration of time and be able to travel a rather long distance. PFOA is once again an 

example that has such (years-long half-life), but a less persistent chemical (e.g. an easily biodegrading 

compound) would be a risk of less duration. This mobility with persistence implies increased exposure 

of human beings and goes in line with the One Health issue of persistent pollutants endangering the 

sustainability of ecosystem and human health in unison. The importance of the mechanistic toxicology 

data in the risk identification is pointed out by endocrine activity being one of the major features (17%). 

When the assays (such as those of estrogen/or androgen receptor interference, e.g. BPA, which is a 
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known xenoestrogen) were lit up by the chemicals, the risk scores were increased. This concurs with 

the current scientific knowledge that the endocrine disruptors, at the low doses, may have severe health 

effects to include developmental, reproductive, and metabolic disorders. RF model worked pretty well 

using these bioassay signals: e.g. BPA and perhaps imidacloprid (some studies indicate the 

neonicotinoids could have endocrine effects) were positive, but carbamazepine was not, and was low-

risk. This indicates that the use of high-throughput screening data can contribute greatly to ML risk 

predictions, as it has been suggested that the combination of computational and mechanistic approaches 

with toxicology is necessary. 

The exposure measure was a production volume (15% importance): the high production/use chemicals 

(PFAS, BPA) are widespread throughout the environment and consequently are more prone to enter the 

population. Although a chemical can be highly toxic, when it is used in a small-scale, or prohibited, 

then the risk is less, whereas a fairly non-toxic chemical used in large scale can result in significant 

population-level effects. This distinction was learnt at the model. Indicative is that the production of 

BPA is large (it is found in a lot of plastics), which increases exposure; the use of silver nanoparticles is 

rising (in consumer products) with concern emerging, and the model shows it (with a relatively high 

feature of usage, which we have primarily due to many consumer products now using AgNPs, but in 

small quantities). Molecular weight (10%), and frequency of detection in water (8%) in slightly minor 

measures had an impact. Transport and absorption properties (e.g. very high molecular weight can imply 

that a compound is not readily absorbed across the gut lining, or can be very high molecular weight 

which implies that it is a large polymer, such as micro plastics, which does not act in that way) could be 

correlates of molecular weight. We had an intermediate distribution of molecular weights (AgNP is 

technically very high when it is an aggregate, microplastic fragment is extremely high, but otherwise 

we have moderate-sized molecules). The frequency of detection only supports exposure: carbamazepine 

was detected often in waters (which may increase its risk in model but other hazard properties of it were 

low thus remaining low risk all in all). PFOA and BPA are highly detected in different media and this 

compliments their risk. 

Notably, these leading six features explained the total importance in the RF, which was about 88 percent, 

and implied that the decisions of the model were predominantly due to a combination of hazard factors 

(endocrine activity, etc.) and exposure factors (persistence, usage, etc.). This consists of a readily 

interpretable reason as to why some contaminants are flagged. It is also consistent with the principles 

of risk assessment: risk is high of chemicals that (a) are persistant and accumulating, (b) have an intrinsic 

biological activity/toxicity (particularly of affecting fundamental systems such as the endocrine system), 

and (c) are actually being used by humans (high use and presence in the environment). These principles 

were essentially rediscovered by our AI model on the data and that is a welcome confirmation of the 

method. 
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Figure 5: The Feature Importance Distribution shows the individual contribution of the hazard and 

exposure descriptors in the determination of contaminant health risk where x axis represents definite 

chemical and biological indicators and y axis, the normalized score represents the importance. The most 

ranked are lipophilicity persistence and endocrine activity which exhibits a strong statistical relationship 

with the high risk category with p less than 0.01. This shows that chemicals which have both the ability 

to act in the short term and in the long term as environmental pollutants have increased chances of 

causing the clinically significant effects to human health. 

 

Figure 6: Receiver Operating Characteristic (ROC Curve) shows the predictive discrimination 

capability of the Random Forest model compared to the Logistic regression in which the x axis is 

considered as false positive rate and y axis as true positive rate. Random Forest curve reveals 

significantly greater area under cross-validation curves meaning that the classification performance of 

p decreases below 0.001. This statistical advantage authenticates dependability in making distinctions 

of high-risk contaminants that have unambiguous implications in pre-eminent regulatory priority. 

3.3 High-Risk Identified Contaminants and Literature Comparison. 

The predictions of the ML model in the extremely cases of contaminants being high risk were close to 

the scientific agreement on the same in our examples and the model also did give valuable information 

about the uncertain cases. PFOA and BPA were both among the worst suggestive results (probability of 

prediction over 90%), which is in line with their reputation as dangerous ECs. This correspondence 

develops an assurance that the model is reflecting real risk factors. Microplastic (polystyrene fragment) 

was not anticipated to be high risk (it was near to the threshold). This is in line with the existing body 

of knowledge: although microplastics are reported as a developing health problem, conclusiveness on 

the serious health effects on human lives is yet to be determined. That lack of certainty was probably 

what our model resembled - microplastics got high on persistence, but there are no distinct toxicological 

mechanism indicators (we placed no specific bioassay positive, those aren't used to test inert particles 

and the exposure is widespread but at unknown dose levels). In this manner the model hedged thereby 

providing a moderate risk rating. Practically, it implies that microplastics are to be investigated further 

(which is precisely the suggestion of a lot of reviews, although, with the existing information, it may 

not be as the highest priority as such matters as PFAS. This type of focusing is applicable in assigning 

research and mitigation activities. 
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 Figure 7: SHAP Influence Gradient depicts the contribution of each of the feature to the final risk scores 

that are being predicted where the x axis is the normalized magnitude of the contribution and the y axis 

is the chemical feature identity. Environmental persistence of the activity of endocrine receptors and 

volume of production have the most significant positive contribution of risk with statistical significance 

of less than 0.01. Such interpretive transparency is beneficial in facilitating clinical and regulatory 

decision pathways, which elucidate mechanistic forces of hazard prioritization. 

4. Discussion 

The silver nanoparticles (AgNPs) also constituted an interesting case as the model gave it a High risk 

label (probability of somewhere between 0.7-0.8) despite having little data on its effect on human 

epidemiology. This was predicted by features: we provided AgNPs with high persistence (they can settle 

and not degrade) and intermediate bioactivity (some in vitro cytotoxicity evidence) and its use is 

increasing. Lasting in essence the model is declaring AgNPs as a circum-subjugation hazard - a theory 

that would not be noteworthy: nanomaterials are capable of being invasive to biological obstacles and 

creating oxidative distress, and silver in ionic structure is already a known poison to microbes and cells. 

Although regulators currently have not purported that AgNPs are significant health risks, our AI score 

metric complies with the precautionary issues of some researchers that long-term exposure to 

nanomaterials may be dangerous (e.g., lung effects caused by inhalation of nanosilver in workplaces or 

impacts on gut microbiome due to ingestion). This is an example of how AI may point out objects that 

may make it to a closer look. Carbamazepine on the contrary was Low risk as is expected by most of 

the judgements since at the trace environmental conditions the compound is likely to have no significant 

impact on human health (but can cause serious environmental impacts on fish and amphibians). The 

model accurately updated on the fact that although carbamazepine was discovered most of the time 

(exposure factor), its indicators of hazard were low (No strong toxic flags), to maintain its risk score at 

a low point. Imidacloprid was marginally high risk; the model was leaning towards declaring it high 

risk a little. It may be a slight exaggeration of the modern human health knowledge - and the 

imidacloprid is extremely neurotoxic to insects (that is why it is used in agriculture) and it has otherwise 

caused concern among pollutants in humans, in humans it usually would take very high doses to produce 

acute neurotoxicity. Nevertheless, developmental effects of prenatal exposure to pesticides have been 

investigated, and some of neonics such as imidacloprid have, albeit inconclusively, been found to cause 

hypothetical neurodevelopmental delays in children. The model, opposing our beliefs, which has a long-

term persistent chemical that is used in large amounts (high exposure by farmers or as food residues) 

and neuroactive (our model did not have an explicit feature of neurotoxicity, and thus it could have been 

that something about its structure or use relates to use of harmful pesticides), chose to default on being 

cautious. This implies, in a real-world context, that regulation agencies need to monitor the human 

health studies of neonicotinoids, although it may be deemed safe at present when used in low doses, 



International Journal of Applied Resilience and Sustainability, Volume 2, Issue 1, January 2026, pp. 170-189 

184 

since the existence of some hidden chronic effects can be identified (this is also indicated by some 

epidemiological studies). 

These results are in line with those reported in the literature: Stanic et al. published the results of research 

on the topic of ML-toxicology that revealed that new research topics are PFAS and microplastics, which 

is the focus of our study too. Our findings highlight that PFAS is high-risk and microplastics a space 

that requires the further incorporation of health information - which is also an expression of the fact that 

ML initiatives they pursue ought to be explicitly paired with human health outcomes of such pollutants. 

We found that our model emphasized highly the potential of endocrine disruption, which supports the 

ubiquity of endocrine-disrupting chemicals (EDCs) among ECs many of the new pollutants of interest 

(PFAS, BPA, phthalates, some pesticides) exhibit the characteristic of endocrine-disruption. This 

supports the scientific finding that endocrine disruption is one of the major criteria in the diagnosis of 

high-risk contaminants. Hence, a direct consequence of this study is that artificial intelligence models 

may be applied to screen a vast library of chemicals with endocrine and persistence receptor profiles to 

identify potential EDCs therein - already being explored by the combination of QSAR (quantitative 

structure-activity relationship) models and high-throughput screening. 

The effective presentation of risk assessment with the help of AI has a number of consequences. It 

indicates first that despite fairly sparse data, machine learning is able to combine disparate pieces of 

information (physical-chemical properties, bioassay signals, usage/exposure data) into a consistent risk 

prediction. Such models will only get better as more and more data are available regarding more 

contaminants. As an example, with the dataset being increased to hundreds of chemicals (which would 

be practical through extracting information on regulatory databases and literature on many 

pharmaceuticals, industrial chemicals, etc.) the model could be trained more robustly and perhaps even 

multi-class risk ranking (i.e. this time the continuous risk score rather than the binary class). It can be 

extended as the feature set is modular: new features such in silico predicted toxicities (on the basis of 

computational chemistry models) or more sophisticated outputs of exposure models can be inserted to 

improve prediction. 

Speed and scalability is one of the obvious advantages of the implementation of AI in this area [10-13]. 

The conventional risk evaluation could test the chemicals individually in animal research over a period 

of years. A trained model of AI is able to consider novel chemicals practically in real-time provided that 

they are supplied with required features. This gives an avenue to prioritize the upcoming contaminants 

to be investigated. Such tools may serve as a filter front by the regulatory agencies in order to be able 

to identify (in the first instance) the top 5% of the thousands of untested chemicals that need to be 

studied urgently so that resource can be allocated in the best way. The model, in our small 

demonstration, has considered silver nanoparticles as a possible problem which may stimulate targeted 

toxicological investigations concerning the chronic impact of nanosilver. Such foresight is essential in 

avoiding so-called "surprises" of a chemical being discovered to be damaging decades later when it had 

spread to a large portion of the population (as has been seen in the past with substances such as DDT 

and PCBs). 

It should be mentioned, though, that the predictions offered by AI do not substitute the empirical 

evidence. Rather they direct the direction to look. The instances of the false-positive and false-negative 

of the model should be in the context. As an example our model would initially raise the red flag of 

imidacloprid (it could be a false-positive in high-risk), instead of reading between the lines experts 

would investigate why (the features that cause it to raise the flag) or even determine whether that is a 

reason to further monitor human exposure to imidacloprid or epidemiological studies. A false-negative 

in a larger set (assuming one of our known dangerous chemicals got missed) would represent, in its 

turn, a hole in features or data representing that chemical which should be filled (such as, when a certain 

chemical is dangerous through a mechanism not represented by our features, the model may skip it - 

showing that the necessity to add that mechanism to our model). 

The other implication is the need to have explainable AI concerning environmental health. Model 

outputs will be more accepted and utilized by the stakeholders (regulators, toxicologists, the population) 

when they comprehend the reasoning behind that. Explanations (as in the case of feature importance 
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and SHAP) help us address the lack of transparency of some ML models (in my opinion) to policy. It 

was also a good sign that the scientific reasoning was close to the thinking of our model - this is arguably 

a good sign of the approach. Explainability also assists in model refinement: e.g. when the model 

depends heavily on a feature that an expert believes is spurious or otherwise not causally related, this is 

an indicator that all is wrong with the data or the model format. The features are significant in our case 

we did not observe something strange (such as the prevalence of the feature of molecular weight when 

it is not supposed to be). 

In the One Health and interdisciplinary sense, this AI method is an example of how data science can be 

used to combine environmental surveillance (frequency of detection), chemical science (homology), 

and biomedical indicators (everlastingly toxicology tests) into a more profound evaluation device. It 

can ease the process of communication between environmental scientists and health researchers - a high 

score of a chemical may trigger epidemiologists to investigate exposed communities to observe specific 

health effects and the reverse may occur that health information that may result may be added as features 

to other models (e.g. if epidemiology demonstrates that a particular chemical is linked to diabetes, it 

can be encoded as a feature to other models or vice versa, health data emerging). 

In our research, there are limitations that one should consider. The contamination sample was extremely 

small; can be used to prove a concept, but in practice, would mean involving a large number of 

chemicals and probably unsupervised or semi-supervised approaches (because we do not even know 

the risk category of most chemicals a priori). Essentially, we put in current knowledge as training labels; 

this implies that the model is incapable of exceeding the current knowledge but is able to generalize the 

known knowledge only. In that way, adequate novel dangers (totally unfamiliar mechanisms) might be 

overlooked in case our characteristics fail to identify them. This could be mitigated by expanding the 

range of features to make it more comprehensive (e.g., with omics data, structural alerts on a myriad of 

toxicophores, etc.). We also simplified the risk classification we employed (High/Moderate/Low) and 

to some degree, it was subjective. Continuous risk metrics or probabilistic risk estimates are targets that 

can be used in the future work, should they be available in the case of quantitative risk assessment. 

The other weakness is that we had coarse features of exposure. In fact a more progressive method would 

combine a modeling module of exposure (e.g. make use of an environmental fate model to forecast 

human doses of intake based on volume and properties of production). We took proxies such as detection 

frequency that do not directly relate to human dose. To be more precise, by integrating ML hazard 

prediction with a re-creation of exposure (possibly, with the assistance of mechanistic models, or 

independent ML at exposure), the simulated risk would be a real risk measure. The more recent advances 

in the literature do discuss explicitly coupling the outputs of ML with human health data. In the future, 

when big data collections that connect chemical exposure biomarkers (such as blood levels or urine 

levels as results of a biomonitoring study) with health outcomes are available, it is possible to imagine 

the direct training of ML models of their relationships. Indicatively, seeing whether the chemical 

exposure profiles by a group of people result in health risk by making a model using a dataset containing 

the PFAS blood levels of people and their health indicators. We do not do that in our present work - we 

merely foreshadow risk on a more qualitative basis with respect to the chemicals, not on an individual 

basis on health outcomes. Essentially closing that gap will be one of the significant additional steps that 

AI will take in environmental health. 

The current tendencies of emerging contaminants research suggest that the introduction of AI is 

increasing at a higher speed, which is also observed by other scholars. Such new technologies as deep 

neural networks, environmental network graph neural networks, and multi-task learning of toxicity 

endpoints are highly promising. In the example, graph neural networks may be employed to capture 

more information on molecular structure of ECs and learn toxicity on it in a manner that is generalized 

across chemical space that is superior to simple descriptors. Also, transfer learning might be used: a 

model that was trained on the known toxic compounds can be trained to forecasts the actions of the new 

compounds with incomplete data. It can as well be extended to include the use of genomic and proteomic 

data (in in vitro experiments of EC exposure) as part of the feature space which may show biomarkers 

of an effect early to which AI can cling. 
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The use of AI in mixture risk assessment is a very intriguing future opportunity. At any given time, 

human beings are exposed to combinations of dozens of ECs. The one that we have is single-chemical 

oriented. Nevertheless, it is possible to induce a model to forecast combined risk of mixtures when those 

features represent an interaction or a co-exposure. This is not straightforward but maybe unsupervised 

learning might detect some groupings of chemicals that recurrently co-occur (e.g. PFAS are often 

removed mixtures of chemicals of varying lengths) and then a supervised model can be fit into them as 

extra variables (such as mixture component of type A present). It is one of the frontiers that will not go 

away easily. Finally, it is important to note that it is vital to keep validating and updating AI models 

using new empirical data. Once new toxicology discoveries are made on emerging contaminants (as 

was done in the case of microplastics, such as a new study finding that microplastic causes a particular 

health effect in people), this can be fed back to update the model - e.g. the training labels should be 

updated to capture new features (e.g. microplastic=1 is a special case), though ideally it should capture 

why microplastic is a threatening contaminant, e.g. microplastic is capable of causing inflammation). 

By so doing, the model will become a living utility, and will enhance through time and, hopefully, 

become more predictive and reliable. 

5. Conclusion 

This paper measured the application of artificial intelligence to measure the risk of human health due to 

new environmental pollutants. Our framework was a new machine learning method based on 

information on chemical properties, toxicological bioactivities, and exposure indicators to predict the 

likely chemical contaminants that will pose great importance to the human health. The AI model (and 

more precisely the Random Forest ensemble) on a selection of representative emerging contaminants 

performed encouragingly and was able to correctly identify known high-risk substances (including 

PFAX and endocrine disruptors) and provide plausible predictions on additional less-studied 

contaminants. The interpretations of the model showed the presence of the essential risk drivers most 

intensively - the existence of the chemicals that were the most active persistently, bioaccumulative, and 

disruptive to the biological systems. These results correlate with the current body of scientific 

knowledge concerning environmental risks, however, most significantly, the AI method would offer a 

more expedient and scaleable platform to filter and prioritize the host of pollutants that do not have 

complete risk analyses. 

Two implications to this work exist. To start with, it proves that AI is a useful supplemental tool in risk 

assessment of environmental health. Machine learning models can be utilized to streamline laboratory 

and epidemiological research by synthesizing various data into a coherent risk prediction, which can 

help in prioritizing the issues of most concern and, consequently, allow identifying the threats to public 

health in the environment more promptly. Such models can be used by regulatory agencies and 

stakeholders to aid in decision making, such as in revising priority pollutant lists or to inform monitoring 

programs to high risk substances whose behaviour is predicted using the model. Such a prioritization 

criteria based on data is particularly applicable because the list of novel chemicals is continually 

growing, and there are not enough testing capabilities. Second, the paper emphasizes the value of One 

Health and interdisciplinary approach, in which computational models should utilize the data related to 

environmental science (exposure data) and biomedical science (toxicological data) at the same time. 

The above integrated feature set success in the prediction of risk confirms the argument that hazard and 

exposure are two elements that should be factored together - which AI can also do smartly, by assigning 

varying weights to numerous elements - in an effort to approximate the real-world risk. 

Another aspect that we accentuate is the value of explainable AI in establishing trust and knowledge. 

Nevertheless, the model was not a black box model in that it is possible to rationalize its results in terms 

of toxicology through feature importance and SHAP analysis. Such a disclosure is essential when AI 

suggestions are to be considered in terms of regulation, where such a solution is conventionally required 

to use evidentiary science and capability-of-action insights. The AI basically summarized patterns of 

which experts would concur (persistence bad, endocrine disruption bad, etc), which in our case gives a 

sort of validation to the practice. Discoverability of such models as they are extended to larger datasets 
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will continue to be of relevance - methods like global surrogate modeling or extracting rules in 

ensembles might be used to provide insights that are easy to interpret. 

Research directions to take in the future involve extending/generalizing the model to include additional 

contaminants and additional finer health outcomes. As an example, instead of a high/low risk, future 

models would project individual health outcome likelihoods (cancer, developmental toxicity etc.) when 

conditioned on the correct data. The combination of human biomonitoring data and epidemiological 

results will be a major improvement in facilitating the learning of AI, as it will have the opportunity to 

learn based on bench science, as well as real-life health outcome trends. Furthermore, collaboration of 

mixture effects and cumulative risk via AI is a challenge that is far to play, yet a critical one, with man 

being exposed to the cocktails of contaminants. The complexity could be addressed with the assistance 

of techniques, such as multi-task learning (making predictions of more than one outcome 

simultaneously), or integrating interaction terms in models. 

it can be concluded that AI as one of the tools to assess the impact of emerging environmental pollutants 

on human health is a timely and successful trend in research. Our paper offers a rough sketch of the way 

such AI-implemented examinations may be implemented. The timely detection of possible dangers and 

an explanation of the reasons why they are dangerous makes AI one of the key elements in tackling 

upcoming contaminants. This will assist in trying to make sure that the public health protections remain 

in a quick pace of introducing new chemicals with the changing outlook of pollution. In the end, the 

connection between artificial intelligence and environmental health science is incredibly productive and 

can ensure human wellbeing and help manage the wise use of chemicals in the future making the 

information an action preventing it all. 
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