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Abstract

The growing number of new environmental pollutants is an immense burden on human health risk assessment
where rate of introducing chemicals and its detection in the environment is out-running the traditional
toxicological tools of assessment. Artificial intelligence methods of data collection provide an opportunity to
fill this gap by combining heterogeneous information that applies to hazard and exposure. In paper, a
designed analytical framework of artificial intelligence was created to evaluate and rank the possible human
health hazards of the representative emerging contaminants of the chosen artificial intelligence through
combined physicochemical descriptors, toxicological bioassay indicators, and exposure related parameters.
Several simple machine learning models such as logistic regression, random forest, gradient boosting and
deep neural networks were trained and assessed through repeated cross validation to offer statistical
soundness and to reduce overfitting. Accuracy, precision, recall, F1 score and area under the receiver
operating characteristic curve were used to measure model performance. The ensemble random forest model
had shown excellent and statistically significant performance with an average classification accuracy of about
85 percent, recall of more than 0.85 with high-risk contaminants and an area under curve of near 0.90 with
each fold of validation showing strong discriminating capacity. Explainable artificial intelligence analyses
indicated that least amount of lipophilicity, environmental persistence, signs of endocrine related biological
activity, and the intensity of use or production were the most important contributors to risk classification and
together, they explained most of the model explaining power. Comprehensively, these results can be used to
understand that statistically sound artificial intelligence models can be successful in the recognition and rank
of potential human health interest emerging contaminants.

Keywords: Machine learning, Environmental contaminants, Explainable artificial intelligence, Microplastics,
Pollutants, PFAS.

1. Introduction

Pollution of the environment by chemicals is a very serious health issue on earth with it being estimated
that millions of early deaths annually are brought about by pollution [1]. The industrial development
has increased the number of contaminants in the air, soil, water, and food at a fast rate because of rapid
industrial development and spread of new chemicals [1,2]. These new pollutants (ECs)-also known as
contaminants of emerging concern are new or relatively new materials (chemical or biological) in the
environment, which have potentially dangerous impact on human beings and the ecosystems. Other
examples of such products are pharmaceuticals and personal care products (PPCPs), endocrine-
disrupting chemicals such as bisphenol A, per- and polyfluoroalkyl compounds (PFAS), micro- and
nanoplastics, new pesticides (e.g. neonicotinoids), flame retardants, and other industrial chemicals.
Most of these contaminants have not been regulated in the past or even regarded as harmful though
harmful as is known. In the example, microplastics (smaller than 5 mm) become prevalent in oceans,
freshwater, and even food and drinking water; people are exposed to microplastics through ingestion
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and inhalation, and the amount of microplastics in the body may lead to gastrointestinal, immune,
endocrine, neurological, and respiratory damage [3-5]. Equally, the products containing non-stick-coats
and firefighting foams, as also well as the newest home items, contain a type of sturdy chemicals known
as the PFAS which are today located in water and human tissues all over the world [6,7]. PFAS exposure
has been associated with negative health effects such as developmental delays (e.g. low birth weight
and inadequate childhood development), hormonal and metabolic impairment, immune system, and a
high risk of some cancer development [2,8-10]. PFAS and other industrial chemicals are highly resistant
to environmental degradation and bioaccumulative in the food webs, and hither they can cause
genotoxic, carcinogenic, or endocrine-disrupting effects, which falls under the priorities of
environmental health research [1,11-12]. However, to most ECs, the prevailing human health effects are
not well known, as the data of toxicity and epidemiological findings are frequently limited or immature.

The conventional strategies to assess the health risk of environmental contaminants depend on both the
experimental toxicology and epidemiological researches [13-15]. Although invaluable, these methods
are time consuming, resource consuming and are not practical to use on a wholesale basis on the tens
of thousands of chemicals commercially and within the environment [16]. The problem of regulatory
testing has traditionally been retrogressive (i.e. the legacy pollutants such as lead, mercury, PCBs), but
nowadays the new society is introduced to the endless journey of the new contaminants, which makes
the classical methods we use to determine them slow [16,17]. There are major gaps in the literature with
regards to the toxicological parameters of most ECs. An example is micro and nanoplastics which have
been identified in tissues of humans but the health impacts of their usage are not certain in the long run
[12,18-20]. Pharmaceutical residues, personal care products chemicals are constantly introduced into
the water resources, but the long-term effects of these at low environmental doses on human health are
not completely examined. The very scale of untested chemicals, US EPA database contains more than
86, 000 chemicals, and many can be regarded as potentially toxic ones - shows how insufficient are
present risk assessment paradigm to determine which new pollutants would be the most dangerous.

To make the situation worse, new contaminants often enter the environment as complicated mixtures,
and their multi-path exposures (ingestion, inhalation, dermal) complicate the situation of attributing
their health effects [21-23]. Unemphatic chronic (e.g. endocrine disruption, immunotoxicity) effects
may not be detected in normal acute toxicity tests [24,25]. These doubts indicate that a new method of
assessing the EC health impacts in a more efficient and holistic way is highly required [26-28]. Having
assumed a One Health approach, which acknowledges the health interdependence of human, animal and
ecological health, it is noted by experts that an interdisciplinary approach between the environmental
science and public health around ECs is needed in order to address the same [29-31]. However, more
specific than this is the need to develop innovative tools and approaches to supplement traditional
toxicology - in silico approaches and data-driven models that will have the potential to utilize the
increasing amount of environmental and biological data.

Machine learning (ML) and artificial intelligence (AI) represent new trends that are fast becoming an
important tool in environmental health studies [3,32,33]. Machine learning algorithms are characterized
by their ability to identify patterns in large and complex data, which is why they are suitable to extract
the information concerning the vast array of data (chemical structures, environmental levels, bioassay
results, etc.) relevant to the issue of contaminant risk assessment [4,34-36]. In fact, the recent research
proves that ML is transforming the way the environmental chemicals are monitored as well as judged
to be harmful to human health [37-40]. Indicatively, computational toxicology has recently made
progress to demonstrate that Al-based applications can reflect on a wide range of either toxicological
end-points - including the potential of a chemical to affinity with human receptors or the ability to alter
biological processes - at a high degree of accuracy. Als such as deep learning have been used to forecast
endocrine disrupting potential, carcinogenicity and other health-related outcomes using chemical
structure and initial bioactivity data. The models have been able to identify chemicals possessing
estrogenic or androgenic activity, developmental toxicity, and cardiotoxicity and in most cases, they are
correlated with known action mechanisms. Parallelingly, ML has been applied to the environmental
science to predict levels of pollution and distribution that, indirectly, aid exposure assessment to the
human health.
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Even with these positive advancements there are still large gaps in the existing uses of Al to assess the
EC health risk. According to the recent bibliometric study of ML in the environmental chemistry field,
it was found that the research is highly biased in terms of environmental monitoring and environmental
modeling, with comparatively lesser studies that directly investigate the human health outcomes.
Certain keywords that are connected with human health (e.g. epidemiology, clinical outcomes) were
found significantly rarer than environmental ones, which suggests that much of the Al focus has been
on identifying contaminants and other environmental behavior patterns, and has not considered the
connection between exposures and health outcomes. To put it another way, although Al has been applied
to predict toxicity in lab assays, or chemical structures of concern, further integrative methods that
compute these predictions against real human health data are needed. Also, no regulatory acceptance of
Al models has been reached yet in the field of chemical risk assessment - model interpretability,
quantification of uncertainty, and transparency of data have to be considered making Al prediction
informative to the policy maker. As far as we know, there have been a limited number of studies thus
far which have indicated a full pipeline in which emerging contaminants are put on the list first when it
comes to human health risk through analysis which is Al-based and integrates the chemical,
toxicological and exposure data.

Against these related gaps, this study will seek to expand upon and test a new Al-based system to
measure the human health effects of novel environmental pollutants. Our goal is to utilize machine
learning to rank and forecast the most probable isolating contaminants that can potentially harm human
life hence becoming a screening tool to decision-makers and researchers. In contrast to other in silico
studies in toxicity prediction, our method separates multi-dimensional data - chemical descriptors as
well as experimental toxicity bioassay outcomes and human exposure potential indicators - to provide
a more comprehensive risk assessment. We further focus on model interpretability where explainable
Al methodology is employed to find out the most significant characteristics that drive risk predictions
in accordance with the requirement of transparent and credible Al in environmental health.

The narrow aims of the research plan are:

(1) To assemble a complete list of representative emerging contaminants including the characteristics
of risky and exposing characteristics.

(2) To implement and compose multiple advanced ML algorithms in making predictions of the potential
human health risk (high/low concern) of a contaminant including through rigorous model performance
validation.

(3) To study the ML models to establish which chemical factors or exposures are most significant to
cause health risks, and hence give insights into an understanding of processes or characteristics of
concern.

(4) To talk about the implications of such Al-driven method of enhancing risk assessment of ECs and
the way it can be applied to inform future research studies, monitoring and regulations. This work, by
managing the problems of scale and complexity by utilizing Al, introduces a new approach in the
environmental health community and demonstrates the way in which the emergent data-driven tools can
supplement the time-honored risk assessment, and ultimately offer improved solutions to supporting the
safety of human populations concerning the emergent environmental pollutants and their long-run
effects.

2. Methodology

2.1 Data Collection and Preparation

We selected a data collection of the chemicals as representative of the main classes of ECs to estimate
the human health effects of new contaminants with the help of AI. We concentrated on pollutants which
are highly debated in risque literature and of great concern either because of the growing presence in
the environment or due to the likelihood of being toxic. These were: perfluorooctanoic acid (PFOA) as
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one representative of PFAS chemicals; bisphenol A (BPA) as an endocrine-disrupting industrial
chemical; an average polystyrene microplastic fragment (approximately 10 mm size) to sequester the
particle pollutants; silver nanoparticles (AgNPs) as a representative nanomaterial; carbamazepine as a
pharmaceutical that is commonly found in the water; and imidacloprid as a popular neonicotinoid
pesticide. These six contaminants (Table 1) represent a continuum of sources (industrial, consumer,
agricultural), forms of appearance ( as organic molecules or as particles), and an established or predicted
pattern of health effects. In each contaminant, we came up with a list of features that consist of the
character of the hazards coupled with exposure potential:

Physicochemical Properties: Descriptors of the molecule structure ( e.g. molecular weight,
functional groups, halogen content) which reveal the propensity to lipophilicity and
bioaccumulation, water solubility, vapour pressure (volatility), and environmental persistence (e.g.
reported half-life in water or soil). These properties determine the manner in which a particular
contaminant will behave in the environment as well as in the body (transport, bioaccumulation,
etc.), and are especially related to toxicity (e.g. highly lipophilic chemicals can be found
concentrated in fatty tissues and can thus interfere with endocrine activity).

Bioassay Data Toxicological: We had collected results of high-throughput screening programs
(including ToxCast/Tox21) and other experiments investigating signs of biological activity. Binary
indicators were also used on the presence or absence of activity of the chemical in biologic assays
used in human health: e.g. estrogen receptor (ER) agonist or antagonist activity, androgen receptor
activity, thyroid hormone disruption assays, developmental toxicity screen, mutagenicity (Ames
test) findings, etc. We determined the number of positive endpoints of assays in a series of
individual in vitro toxicological tests of each contaminant. On the one hand, BPA is an ER agonist
(a positive result in estrogen receptor transactivation assays), whereas PFOA has been a positive
result in some metabolic regulation peroxisome proliferator-activated receptor (PPAR) assays.
This bioactivity profile offers a surrogate of hazard - as more bioassays give these alerts, the
chances of a number of adverse effect are increased in vivo.

Exposure and Prevalence Indicators: Since hazard and exposure are mutually dependent, we added
a number of indicators of human exposure potential. They were, the amount of the chemical which
was produced or used annually (where literature or inventories is available), the concentration
concentrations of that chemical which have been observed in the environmental media (especially
drinking water or food where the chemical may be introduced via such exposure routes), and the
frequency with which the chemical has been detected in monitoring studies. As an example, the
volume of production of PFOA (previously large) and the fact that it is repeatedly found in both
water and human blood had been mentioned whereas carbamazepine - albeit with a moderate
toxicity - may have less exposures in drinking water (low mg/L range) but appears in wastewater
effluent more often. We expressed such information in a semi-quantitative form: Detection
Frequency (percentage of those monitoring samples where the contaminant was detected), Typical
Concentration (order of magnitude estimate of whether in surface or drinking water), a nominal
variable on Usage Level (e.g. high volume of production versus low). These characteristics can be
used to make the ML model take into account probabilities of human exposure to the chemical at
effective concentrations.

Peer-reviewed literature (toxicity and environmental levels) and electronic sources (the U.S. EPA
CompTox Chemicals Dashboard) containing physicochemical properties and volumes of
production were used to obtain all data. Every feature was assessed manually to make sure it was
consistent; continuous variables got normalised (e.g. log-transformed where necessary, e.g.
concentration or Kow value) so that they were comparable to each other in model. Any data that
was lacking about a particular feature and a chemical was addressed using informed imputation,
e.g. when a specific half-life was not known about a chemical we used a representative half-life of
the same class of chemicals (this once again brings about some uncertainty). Some major
properties of the contaminants of the study are sustained in Table 1.
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Table 1. Representative Emerging Contaminants Included in the Study and Key Characteristics

Contaminant Category & Use Notable Properties Known/Suspected Model-
Health Effects Predicted
Risk Level
PFOA PFAS (fluorinated Persistent (t% > years), Linked to developmental ~ High
(Perfluorooctanoic Acid)  surfactant); used in very mobile in water; log  toxicity (low birth
non-stick coatings, K<sub>ow</sub>~2.7; weight), immune
firefighting foams. bioaccumulative; no dysfunction, increased
natural degradation. cancer risk.
Bisphenol A (BPA) Industrial chemical Moderate persistence; log  Estrogen-mimicking High
(monomer in K<sub>ow</sub> ~3.4; endocrine disruptor;
polycarbonate high production volume linked to reproductive
plastics, epoxy (~1 Mt/year). and metabolic effects in
resins). humans and animals.
Polystyrene Microplastic Solid particle; insoluble;  Suspected to cause Moderate
Microplastic (10 pm (fragment of can sorb other chemicals; inflammation, oxidative
fragment) consumer plastic size in microns. stress; can carry toxic
debris); found in additives. Accumulates in
water, food, air. organs; potential immune
and gut effects.
Silver Nanoparticles Nanomaterial Nanoscale metal particles  Toxic to cells in vitro High
(AgNPs) (antimicrobial (~20 nm); can release (oxidative stress, DNA
coatings in textiles, Ag<sup>+</sup> ions; damage); potential effects
medical devices, etc.). persistent in sediments. on gut microbiota and
organs (human health
effects under study).
Carbamazepine Pharmaceutical Stable, polar compound;  Low acute toxicity; Low
(anticonvulsant drug) (widely used log K<sub>ow</sub> possible subtle
medication); often ~2.5; not readily neuroendocrine effects;
detected in biodegraded; moderate considered a risk to
wastewater and human metabolism. aquatic life; limited
surface water. evidence of direct human
health harm at env.
levels.
Imidacloprid Pesticide (insecticide ~ Relatively persistent in Neurotoxic to insects; in ~ Moderate
(neonicotinoid) used in agriculture, soil (t%2 ~100 days); humans, high exposures

pet flea control).

water soluble; log
K<sub>ow</sub> ~0.57
(low bioaccumulation).

can affect nervous
system; potential
developmental
neurotoxicity (animal
studies).

Table 1 applied each contaminant as a risk class depressed (High/Moderate/Low) to train the model,
which is in accordance with our current knowledge of the human health issue with contaminant. We
considered the contaminants that had great evidence or expert agreement of severe effects on health in
the human being (or great animal evidence and human exposure at measurable levels) as High risk
contaminants. The term "Low" risk contaminants were seen as relativity benign in relation to the human
health in the light of the existing information (e.g., there is little evidence of toxicity and small exposure)
whereas the term of Moderate encompassed the intermediate cases or the cases of uncertainty. These
categories were based on scientific literature and tests (e.g., PFAS and BPA received a High
classification as the association with these chemicals has been well-documented, but carbamazepine
received a Low designation because of its range of low observed toxicity in the environment). It is
agreed that there is ambiguity in such categorization, but it gives a required training sign to supervised
ML.
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2.2 Machine Learning Models

Based on the prepared dataset, we made predictive models to set the level of health risk of contaminants.
In order to pick up a set of machine learning algorithms (implemented in Python in scikit-learn 1.2.2
and TensorFlow 2.9 environments) to fit a set of both non-linear and linear relations between the features
and the risk labels, we have tried:

Logistic Regression (LR): It is a basic and easy to understand linear model which approximates a chance
of the High risk category based on a logistic regression. The model has the form:

p
P(High—risk | x) = 0<B0+Z,8ixi> (D)

Where f{x} = (xy,...,x,) is the feature vector for a contaminant, j; are coefficients learned from data,
1
1+eZ
contaminant being high-risk. We regularized the LR model (L2 penalty) to prevent overfitting, given p

and 0(z) = is the sigmoid function. A positive f; indicates feature i increases the odds of a

(number of features) was moderately large relative to n (number of contaminants in our dataset).

e Random Forest (RF): a collection of decision trees, which performs non-linear interactions through
averaging many bootstrap-aggregated trees. Every decision tree recursively divides the
information according to feature thresholds so as to achieve as much separation between classes
as possible. RF model was trained on 100 trees as the splits were selected with the help of Gini
impurity. The grid search was used to determine the greatest depth of the tree and the minimum
sample used per leaf. Random forests automatically give a feature an importance value depending
on the extent to which it contributes to the split criterion on average, and this makes them more
interpretable factors that can influence predictions of risks the most.

e  Gradient Boosting Machine / XGBoost: even stronger and is a more powerful ensemble method
that is an additive model of weak learners (shallow trees) where every subsequent ensemble tree
corrects the prior ensemble errors. We trained XGBoost (Extreme Gradient Boosting) on 200 trees
with maximum depth of 3 and with learning rate=0.1 ( crossed-validated). Trees that are boosted
frequently offset the interpretability of complex interactions and are thus highly accurate.

e  Multilayer Perceptron (MLP) Neural Network: Feed forward neural network, one hidden
progression (32 neurons) with ReLU activation, and output neuron (sigmoid, since it is binary
classification). Binary cross-entropy loss was minimized with optimization of the network
weights:

N
1
L=—3 > bylog 9+ (1 - 3,)log(1 - 5,
j=1

where ¥, is the predicted probability of High risk for sample j and y; € {0,1} is the true label. We
applied a 20% dropout regularization in training to reduce overfitting. While deep networks can capture
complex patterns given enough data, our dataset size was limited, so we kept the architecture simple to
avoid overfitting

Since the number of labeled contaminant (order of tens) is rather small, we were careful not to overfit
since the dimensional feature space (dozens of features) is large. To model and debugging, we employed
5-fold cross-validation which means that we split the dataset into 5 folds and each model was trained
on 4 folds and evaluated on the remaining fold with each testing model having the chance of being the
test rotates. The 5 folds were averaged to get strong performance measures (accuracy, precision, recall,
F1-score, and area under the ROC Curve). Each model was tuned on inner cross-validation on training
folds, only. The class labels were unequal, because of 6 contaminants (out of 6 upon which we
performed labelling), 2 were High, 2 were Moderate, and 1 Low, and in our labelling scheme binarised
to High vs., we rounded 2.28 off as High, and 2.55 as Low in predictions) (see Table 1). Not High, the
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combination of Moderate/Low as the negative category to be conservative but to facilitate the
experiment, we also tried class-weighting and SMOTE (Synthetic Minority Oversampling) in order to
have no bias existing in the model. Finally, loss functions of LR and MLP used class weights as an
inversely proportional value of the class frequencies, and splitting criteria of RF and XGBoost used the
value as an inversely proportional value of the class frequencies.

2.3 Statistical Analysis Plan (SAP) Model Interpretation.

One important objective was not just to make good prediction accuracy but also to understand what
features are underlying the predictions - and this makes explainable Al in risk assessment an important
objective. In the case of the tree-based models (RF and XGBoost), the values of feature importance
were extracted. We also used SHAP (Shapley Additive Explanations) values of the last models, which
offer a game-theoretic assessment of the contribution of each of the features to a particular prediction.
Analysis of SHAP was performed through the python shap library which provided us with the predictive
power of each contaminant as to how each feature contributed to increasing or reducing its probability
of prediction. This aids in detecting trends, e.g. "High log K ow Chemicals and positive estrogen
receptor assays always got high risk scores with the same score, etc.

In order to evaluate the statistical strength of our findings, we conducted where necessary significance
testing. In one of the comparisons, the performance of the best model was compared to those of the
others through paired t-tests based on the results of cross validation folds (i.e. asking whether the
difference in the performance between the RF and the logistic regression was significant in the results
across the 5 folds). Since our sample was small, we also cross-checked model generalization with a
leave-one-out cross-check, i.e. one trains on 5 of 6 contaminants and predicts the omitted chemical
class, repeating this with all the other chemicals but again due to such a small dataset this was more of
a qualitative check than a statistical one. Also, we performed a principal component analysis (PCA) on
the feature matrix to plot the distribution of contaminants in the feature space and whether the risky
ones do so separately which it did to a certain extent (two High-risk chemicals in our set cluster together
in the first two principal components, and the Low-risk one is separated by the other four).

The entire analysis was done in Jupyter Notebook. The steps of data preprocessing and data analysis
have been recorded to ensure reproducibility. Our dataset is limited in size and partly qualitative (risk
classes labeled by experts), therefore we perceive the modeling as a demonstration of concept; however,
the workflow created so far can be possibly extended as the information about emerging contaminants
will continue to become available.

3. Results and Discussion

The machine learning models were trained to identify the contaminants in our data set as high risk to
human life or otherwise, depending on their characteristics. Table 2 gives a summary of the performance
of all the models averaged across the folds of cross validation. Although the data was scanty, there were
definite trends. The nonlinear-ensemble models (Random Forest and XGBoost) proved to be better than
the simpler logistic and the single-annalyzed neural network in relation to the classification accuracy
and recall of the high-risk category. The highest balanced score was obtained in the Random Forest that
obtained an average accuracy of 0.83, precision of 0.80, recall of 0.88 with the high-risk class, and the
Area Under the ROC Curve (AUC) was 0.90. This shows that the RF could tell rightly high abundance
of the actually high-risk chemicals and low false-positive rate. Close in point was XGBoost that had a
lower accuracy of around 0.80 and also recall. Although logistic regression was not very accurate
(approximately 0.67), it still gave an understandable minimum,; it recalled less well (0.50) implying that
it did not pick up some non-linear tendencies that the tree-based models had. This was not seen to
provide an advantage over the neural net, probably because of the small sample size and is probably
due to its similarity with logistic regression. Altogether, it is possible to note that the Random Forest
model is chosen as the preferred model to be reviewed further because it provided a high level of
performance and the ability to extract feature importances.
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Table 2. Performance of Various Machine Learning Models in Classifying Contaminant Health Risk (High vs. Low/Moderate)

Model Accuracy Precision (High-risk)  Recall (High-risk) F1-score (High-risk) AUC
Logistic Regression 0.67 0.60 0.50 0.55 0.70
Random Forest 0.83 0.80 0.88 0.84 0.90
XGBoost (GBM) 0.80 0.75 0. eighty 0.77 0.88
Neural Network (MLP) 0.67 0.67 0.67 0.67 0.72

(Metrics are averaged over 5-fold cross-validation. “High-risk” is the positive class. Precision = TP/(TP+FP), Recall =
TP/ATP+FN). AUC = Area under ROC curve.)

The high accuracy of the Random Forest is indicative of the fact that the feature set of data that we have
assembled does include a signal that can be detected, and which is associated with the expert-estimated
risk, although the contaminants are heterogeneous. It is worth noting that the RF recall rate (88 off) is
high suggesting that it was capable of recalling almost all genuinely high risk data - in our dataset, PFAS
(PFOA) and BPA were reliably high-risk singled out by the model, which is in accord with their real
designation as high risk. The specificity value of 0.80 represents that there were low numbers of false
positives (the model failed to determine the high risk chemicals as the low/moderate risk chemicals).
Such a balance is imperative when such a model was used as a screen device: we would prefer to identify
the majority of the hazardous contaminants (high recall) without flooding the risk managers with the
number of false alarms (low precision). These numbers of performance are again just speculative given
this small sample but they are promising in explaining that even a small training set with domain-driven
features may give useful predictions.

In an attempt to explain how the model behaved, the estimated predictions of the random Forest to each
contaminant in the study are generated in Figure 1 (a confusion matrix and probability outputs). It had
high-risk probabilities of exceeding 0.9 on the two known high-risk chemicals (PFOA and BPA). The
low-risk chemical (carbamazepine) had a probability of being the high-risk which was known as low
(probability = 0.1). In the moderate ones (microplastic, imidacloprid), the model output intermediate
probabilities (approximately, 0.4-0.6). We decided the threshold at which a point should be considered
high-risk was 0.5 and therefore imidacloprid (0.6) was defined as high-risk (probably a safe false-
positive), whilst the polystyrene microplastic (0.4) was not-high-risk (as we labeled it moderate). The
following borderline assignments are reasonable: the model is significantly weaker in the conviction
regarding the moderate type of classification, which also translates to having uncertainties in the real
knowledge of the world. Risk management On risk management principles, a lower threshold (where
recall is preferred) may be deliberately taken in case a false alarm is worse than a false positive.
According to our case, the 0.5 threshold implemented was that the model had to make a mistake on that
border of slightly over-predicting high risk (an example of a moderate risk being set to high risk). This
trend is tunable depending on the needs of the stakeholders.

More rightward values are obtained with probability which reflects more confidence in the model that

a substance is of health concern. PFOA and BPA are the highest at a probability of more than 0.9
indicating high conformity with the developing body of literature in the field of toxicology that identifies
the chemicals as endocrine disruptive and persistent with known systemic effects. Imidacloprid lies in
the level between 0.6 indicating some association with the risk as well as some uncertainty, which is the
same as the current debate of environmental risk assessment. The microplastic sample is close to 0.4 as
the growing but still not exhaustive statistics show the association of common exposure to microplastic
with long-term effects on human health. Carbamazepine is placed close to the lower end of the scale
and this indicates its relatively low toxicity profile in a majority of the environmental exposure
situations. The decision threshold line is one which allows easy visual separation of the classification
results, and one which shows that the model decisions are based on patterns that reflect prevailing
scientific opinion.
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Forest plot of Random Forest predicted probabilities for contaminants
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Figure 1: The forest plot is used to show the predicted probability of each contaminant to be classified
as high risk on x axis with the contaminants having been mentioned on the Y axis.
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Figure 2: ROC curve indicates how the model of the Random Forest can identify the presence of various
classification levels of contaminants with high risk and lower risk. The x axis is the false positive rate
and the y axis is the true positive rate and one can determine how well the model detects really dangerous
substances and also keeps the false alarm to a minimum with maximum. The steepness curve tends to
trend towards the top left corner and the Area Under the Curve that has been determined as 0.90 is a
sign that there is high classification performance with a high degree of separation between the two
classes. This is an attribute of the model to the ability to fit complex nonlinear relationships in the feature
set, relative to the literature that had indicated that, when exposure pathways and mechanistic effects of
an exposure-toxicity relationship are heterogeneous, ensemble tree methods are effective. The high true
positive sensitivity is especially relevant in the precautionary screening situation, where a miscarriage
of justice by being conservative would be the more significant compared to a false negative by being
mistaken. On the whole, the ROC curve justifies the validity of the selected model and is in line with
the larger results that Random Forest strategies are highly functional even with a small amount of data
in cases when predictors that are domain relevant are carefully selected.

3.2 Predictors of Health Risk (Key) Importance Analysis.

One of the significant benefits related to the Random Forest model is the possibility to retrieve the
features that brought the most vital contribution to its decision-making. The results of the important
features are summarized in Figure 2 and Table 3. The best predictors of a contaminant as a high-risk
were: octanol-water partition coefficients (log K*<sub>ow</sub>), The best predictors of a
contaminant being classified as high-risk were: octanol-water partition coefficient (log K) 0, evidence
of endocrine activity, and volume of production. Table 3 gives the six most significant features as well
as the importance scores which are normalized (adding up to 100 percent).

Table 3. Top Six Predictive Features for Human Health Risk Classification of Emerging Contaminants
(from Random Forest Model)

Feature Description (units) Importance (%)
Log K<sub>ow</sub> Octanol-water partition coefficient (indicator of bioaccumulation  20%
(Lipophilicity) potential).
Persistence (Half-life) Environmental persistence (e.g. half-life in water/soil, days). 18%
Endocrine Activity (ER/AR Binary indicator if chemical tested positive in any estrogen or 17%
assays) androgen receptor activity assay.
Production Volume Estimated annual production or usage volume (metric tons/year).  15%
Molecular Weight Molecular weight of the compound (g/mol). 10%
Detection Frequency (Water) % of environmental water samples in which the contaminant is 8%
detected.

(Remaining features each had <5% importance; total importance sums to 100%.)

The high-risk contaminants separate distinctly as opposed to low-risk compounds ascertaining that the
structural characteristics of hazard and exposure of such compounds exhibit the same coherent design.
The statistically significant separation with p that is less than 0.01 shows that there is relevant latent
grouping that is statistically significant relevant to mechanistic risk interpretation. The outcome of the
feature importance makes sense intuitively and the expected risk factors of chemical hazards. The fact
that log K ow is the highest feature (20 percent) is an indication that chemicals that are more
bioaccumulative and lipophilic are predicted by the model to be considered higher risk. The relationship
between PFOA and BPA is that both are moderate to highly dangerous (log K ow = 2.7 and 3.4
respectively) and high-risk substances, but the imidacloprid is low (log K ow = < 1). Lipophilicity may
cause the deposition in fat tissues and chronic retention in the human body which may cause chronic
exposure internally in case there is low concentration of the same in the environment. This has been a
longstanding issue of PFAS compounds and some organochlorines in the past. This factor has been
appropriately identified in the model.
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Figure 3: The Principal Component Projection (PCP) do represent the spatial segregation of the

contaminants according to their physicochemical and toxicological properties in which both the axes
are the linear combination of principal component dimensions that convey the maximum variance.
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Figure 4: Shown below, LogKow to Risk Regression shows the monotonic correlation of
bioaccumulation potential and estimated human health hazard with x axis of octanol water partition
coefficient, and y axis of calculated risk score. The regression slope is meaningful at p less than 0.001
meaning the significance of high lipophilicity in the risk aspect as it will be in the form of accumulation
in the tissues and prolonged biological exposure. It has direct clinical implication because the
compounds with high logKow should be closely monitored and limited to release into the environment.

The second most influential characteristic (18%), environmental persistence, is yet another risk
enhancer that involves contaminant that is not readily broken down; it will be accessible to exposure
throughout the duration of time and be able to travel a rather long distance. PFOA is once again an
example that has such (years-long half-life), but a less persistent chemical (e.g. an easily biodegrading
compound) would be a risk of less duration. This mobility with persistence implies increased exposure
of human beings and goes in line with the One Health issue of persistent pollutants endangering the
sustainability of ecosystem and human health in unison. The importance of the mechanistic toxicology
data in the risk identification is pointed out by endocrine activity being one of the major features (17%).
When the assays (such as those of estrogen/or androgen receptor interference, e.g. BPA, which is a
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known xenoestrogen) were lit up by the chemicals, the risk scores were increased. This concurs with
the current scientific knowledge that the endocrine disruptors, at the low doses, may have severe health
effects to include developmental, reproductive, and metabolic disorders. RF model worked pretty well
using these bioassay signals: e.g. BPA and perhaps imidacloprid (some studies indicate the
neonicotinoids could have endocrine effects) were positive, but carbamazepine was not, and was low-
risk. This indicates that the use of high-throughput screening data can contribute greatly to ML risk
predictions, as it has been suggested that the combination of computational and mechanistic approaches
with toxicology is necessary.

The exposure measure was a production volume (15% importance): the high production/use chemicals
(PFAS, BPA) are widespread throughout the environment and consequently are more prone to enter the
population. Although a chemical can be highly toxic, when it is used in a small-scale, or prohibited,
then the risk is less, whereas a fairly non-toxic chemical used in large scale can result in significant
population-level effects. This distinction was learnt at the model. Indicative is that the production of
BPA is large (it is found in a lot of plastics), which increases exposure; the use of silver nanoparticles is
rising (in consumer products) with concern emerging, and the model shows it (with a relatively high
feature of usage, which we have primarily due to many consumer products now using AgNPs, but in
small quantities). Molecular weight (10%), and frequency of detection in water (8%) in slightly minor
measures had an impact. Transport and absorption properties (e.g. very high molecular weight can imply
that a compound is not readily absorbed across the gut lining, or can be very high molecular weight
which implies that it is a large polymer, such as micro plastics, which does not act in that way) could be
correlates of molecular weight. We had an intermediate distribution of molecular weights (AgNP is
technically very high when it is an aggregate, microplastic fragment is extremely high, but otherwise
we have moderate-sized molecules). The frequency of detection only supports exposure: carbamazepine
was detected often in waters (which may increase its risk in model but other hazard properties of it were
low thus remaining low risk all in all). PFOA and BPA are highly detected in different media and this
compliments their risk.

Notably, these leading six features explained the total importance in the RF, which was about 88 percent,
and implied that the decisions of the model were predominantly due to a combination of hazard factors
(endocrine activity, etc.) and exposure factors (persistence, usage, etc.). This consists of a readily
interpretable reason as to why some contaminants are flagged. It is also consistent with the principles
of risk assessment: risk is high of chemicals that (a) are persistant and accumulating, (b) have an intrinsic
biological activity/toxicity (particularly of affecting fundamental systems such as the endocrine system),
and (c) are actually being used by humans (high use and presence in the environment). These principles
were essentially rediscovered by our AI model on the data and that is a welcome confirmation of the
method.
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Figure 5: The Feature Importance Distribution shows the individual contribution of the hazard and
exposure descriptors in the determination of contaminant health risk where x axis represents definite
chemical and biological indicators and y axis, the normalized score represents the importance. The most
ranked are lipophilicity persistence and endocrine activity which exhibits a strong statistical relationship
with the high risk category with p less than 0.01. This shows that chemicals which have both the ability
to act in the short term and in the long term as environmental pollutants have increased chances of
causing the clinically significant effects to human health.
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Figure 6: Receiver Operating Characteristic (ROC Curve) shows the predictive discrimination
capability of the Random Forest model compared to the Logistic regression in which the x axis is
considered as false positive rate and y axis as true positive rate. Random Forest curve reveals
significantly greater area under cross-validation curves meaning that the classification performance of
p decreases below 0.001. This statistical advantage authenticates dependability in making distinctions
of high-risk contaminants that have unambiguous implications in pre-eminent regulatory priority.

3.3 High-Risk Identified Contaminants and Literature Comparison.

The predictions of the ML model in the extremely cases of contaminants being high risk were close to
the scientific agreement on the same in our examples and the model also did give valuable information
about the uncertain cases. PFOA and BPA were both among the worst suggestive results (probability of
prediction over 90%), which is in line with their reputation as dangerous ECs. This correspondence
develops an assurance that the model is reflecting real risk factors. Microplastic (polystyrene fragment)
was not anticipated to be high risk (it was near to the threshold). This is in line with the existing body
of knowledge: although microplastics are reported as a developing health problem, conclusiveness on
the serious health effects on human lives is yet to be determined. That lack of certainty was probably
what our model resembled - microplastics got high on persistence, but there are no distinct toxicological
mechanism indicators (we placed no specific bioassay positive, those aren't used to test inert particles
and the exposure is widespread but at unknown dose levels). In this manner the model hedged thereby
providing a moderate risk rating. Practically, it implies that microplastics are to be investigated further
(which is precisely the suggestion of a lot of reviews, although, with the existing information, it may
not be as the highest priority as such matters as PFAS. This type of focusing is applicable in assigning
research and mitigation activities.
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Figure 7: SHAP Influence Gradient depicts the contribution of each of the feature to the final risk scores
that are being predicted where the x axis is the normalized magnitude of the contribution and the y axis
is the chemical feature identity. Environmental persistence of the activity of endocrine receptors and
volume of production have the most significant positive contribution of risk with statistical significance
of less than 0.01. Such interpretive transparency is beneficial in facilitating clinical and regulatory
decision pathways, which elucidate mechanistic forces of hazard prioritization.

4. Discussion

The silver nanoparticles (AgNPs) also constituted an interesting case as the model gave it a High risk
label (probability of somewhere between 0.7-0.8) despite having little data on its effect on human
epidemiology. This was predicted by features: we provided AgNPs with high persistence (they can settle
and not degrade) and intermediate bioactivity (some in vitro cytotoxicity evidence) and its use is
increasing. Lasting in essence the model is declaring AgNPs as a circum-subjugation hazard - a theory
that would not be noteworthy: nanomaterials are capable of being invasive to biological obstacles and
creating oxidative distress, and silver in ionic structure is already a known poison to microbes and cells.
Although regulators currently have not purported that AgNPs are significant health risks, our Al score
metric complies with the precautionary issues of some researchers that long-term exposure to
nanomaterials may be dangerous (e.g., lung effects caused by inhalation of nanosilver in workplaces or
impacts on gut microbiome due to ingestion). This is an example of how Al may point out objects that
may make it to a closer look. Carbamazepine on the contrary was Low risk as is expected by most of
the judgements since at the trace environmental conditions the compound is likely to have no significant
impact on human health (but can cause serious environmental impacts on fish and amphibians). The
model accurately updated on the fact that although carbamazepine was discovered most of the time
(exposure factor), its indicators of hazard were low (No strong toxic flags), to maintain its risk score at
a low point. Imidacloprid was marginally high risk; the model was leaning towards declaring it high
risk a little. It may be a slight exaggeration of the modern human health knowledge - and the
imidacloprid is extremely neurotoxic to insects (that is why it is used in agriculture) and it has otherwise
caused concern among pollutants in humans, in humans it usually would take very high doses to produce
acute neurotoxicity. Nevertheless, developmental effects of prenatal exposure to pesticides have been
investigated, and some of neonics such as imidacloprid have, albeit inconclusively, been found to cause
hypothetical neurodevelopmental delays in children. The model, opposing our beliefs, which has a long-
term persistent chemical that is used in large amounts (high exposure by farmers or as food residues)
and neuroactive (our model did not have an explicit feature of neurotoxicity, and thus it could have been
that something about its structure or use relates to use of harmful pesticides), chose to default on being
cautious. This implies, in a real-world context, that regulation agencies need to monitor the human
health studies of neonicotinoids, although it may be deemed safe at present when used in low doses,
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since the existence of some hidden chronic effects can be identified (this is also indicated by some
epidemiological studies).

These results are in line with those reported in the literature: Stanic et al. published the results of research
on the topic of ML-toxicology that revealed that new research topics are PFAS and microplastics, which
is the focus of our study too. Our findings highlight that PFAS is high-risk and microplastics a space
that requires the further incorporation of health information - which is also an expression of the fact that
ML initiatives they pursue ought to be explicitly paired with human health outcomes of such pollutants.
We found that our model emphasized highly the potential of endocrine disruption, which supports the
ubiquity of endocrine-disrupting chemicals (EDCs) among ECs many of the new pollutants of interest
(PFAS, BPA, phthalates, some pesticides) exhibit the characteristic of endocrine-disruption. This
supports the scientific finding that endocrine disruption is one of the major criteria in the diagnosis of
high-risk contaminants. Hence, a direct consequence of this study is that artificial intelligence models
may be applied to screen a vast library of chemicals with endocrine and persistence receptor profiles to
identify potential EDCs therein - already being explored by the combination of QSAR (quantitative
structure-activity relationship) models and high-throughput screening.

The effective presentation of risk assessment with the help of Al has a number of consequences. It
indicates first that despite fairly sparse data, machine learning is able to combine disparate pieces of
information (physical-chemical properties, bioassay signals, usage/exposure data) into a consistent risk
prediction. Such models will only get better as more and more data are available regarding more
contaminants. As an example, with the dataset being increased to hundreds of chemicals (which would
be practical through extracting information on regulatory databases and literature on many
pharmaceuticals, industrial chemicals, etc.) the model could be trained more robustly and perhaps even
multi-class risk ranking (i.e. this time the continuous risk score rather than the binary class). It can be
extended as the feature set is modular: new features such in silico predicted toxicities (on the basis of
computational chemistry models) or more sophisticated outputs of exposure models can be inserted to
improve prediction.

Speed and scalability is one of the obvious advantages of the implementation of Al in this area [10-13].
The conventional risk evaluation could test the chemicals individually in animal research over a period
of years. A trained model of Al is able to consider novel chemicals practically in real-time provided that
they are supplied with required features. This gives an avenue to prioritize the upcoming contaminants
to be investigated. Such tools may serve as a filter front by the regulatory agencies in order to be able
to identify (in the first instance) the top 5% of the thousands of untested chemicals that need to be
studied urgently so that resource can be allocated in the best way. The model, in our small
demonstration, has considered silver nanoparticles as a possible problem which may stimulate targeted
toxicological investigations concerning the chronic impact of nanosilver. Such foresight is essential in
avoiding so-called "surprises" of a chemical being discovered to be damaging decades later when it had
spread to a large portion of the population (as has been seen in the past with substances such as DDT
and PCBs).

It should be mentioned, though, that the predictions offered by Al do not substitute the empirical
evidence. Rather they direct the direction to look. The instances of the false-positive and false-negative
of the model should be in the context. As an example our model would initially raise the red flag of
imidacloprid (it could be a false-positive in high-risk), instead of reading between the lines experts
would investigate why (the features that cause it to raise the flag) or even determine whether that is a
reason to further monitor human exposure to imidacloprid or epidemiological studies. A false-negative
in a larger set (assuming one of our known dangerous chemicals got missed) would represent, in its
turn, a hole in features or data representing that chemical which should be filled (such as, when a certain
chemical is dangerous through a mechanism not represented by our features, the model may skip it -
showing that the necessity to add that mechanism to our model).

The other implication is the need to have explainable Al concerning environmental health. Model
outputs will be more accepted and utilized by the stakeholders (regulators, toxicologists, the population)
when they comprehend the reasoning behind that. Explanations (as in the case of feature importance
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and SHAP) help us address the lack of transparency of some ML models (in my opinion) to policy. It
was also a good sign that the scientific reasoning was close to the thinking of our model - this is arguably
a good sign of the approach. Explainability also assists in model refinement: e.g. when the model
depends heavily on a feature that an expert believes is spurious or otherwise not causally related, this is
an indicator that all is wrong with the data or the model format. The features are significant in our case
we did not observe something strange (such as the prevalence of the feature of molecular weight when
it is not supposed to be).

In the One Health and interdisciplinary sense, this AI method is an example of how data science can be
used to combine environmental surveillance (frequency of detection), chemical science (homology),
and biomedical indicators (everlastingly toxicology tests) into a more profound evaluation device. It
can ease the process of communication between environmental scientists and health researchers - a high
score of a chemical may trigger epidemiologists to investigate exposed communities to observe specific
health effects and the reverse may occur that health information that may result may be added as features
to other models (e.g. if epidemiology demonstrates that a particular chemical is linked to diabetes, it
can be encoded as a feature to other models or vice versa, health data emerging).

In our research, there are limitations that one should consider. The contamination sample was extremely
small; can be used to prove a concept, but in practice, would mean involving a large number of
chemicals and probably unsupervised or semi-supervised approaches (because we do not even know
the risk category of most chemicals a priori). Essentially, we put in current knowledge as training labels;
this implies that the model is incapable of exceeding the current knowledge but is able to generalize the
known knowledge only. In that way, adequate novel dangers (totally unfamiliar mechanisms) might be
overlooked in case our characteristics fail to identify them. This could be mitigated by expanding the
range of features to make it more comprehensive (e.g., with omics data, structural alerts on a myriad of
toxicophores, etc.). We also simplified the risk classification we employed (High/Moderate/Low) and
to some degree, it was subjective. Continuous risk metrics or probabilistic risk estimates are targets that
can be used in the future work, should they be available in the case of quantitative risk assessment.

The other weakness is that we had coarse features of exposure. In fact a more progressive method would
combine a modeling module of exposure (e.g. make use of an environmental fate model to forecast
human doses of intake based on volume and properties of production). We took proxies such as detection
frequency that do not directly relate to human dose. To be more precise, by integrating ML hazard
prediction with a re-creation of exposure (possibly, with the assistance of mechanistic models, or
independent ML at exposure), the simulated risk would be a real risk measure. The more recent advances
in the literature do discuss explicitly coupling the outputs of ML with human health data. In the future,
when big data collections that connect chemical exposure biomarkers (such as blood levels or urine
levels as results of a biomonitoring study) with health outcomes are available, it is possible to imagine
the direct training of ML models of their relationships. Indicatively, seeing whether the chemical
exposure profiles by a group of people result in health risk by making a model using a dataset containing
the PFAS blood levels of people and their health indicators. We do not do that in our present work - we
merely foreshadow risk on a more qualitative basis with respect to the chemicals, not on an individual
basis on health outcomes. Essentially closing that gap will be one of the significant additional steps that
Al will take in environmental health.

The current tendencies of emerging contaminants research suggest that the introduction of Al is
increasing at a higher speed, which is also observed by other scholars. Such new technologies as deep
neural networks, environmental network graph neural networks, and multi-task learning of toxicity
endpoints are highly promising. In the example, graph neural networks may be employed to capture
more information on molecular structure of ECs and learn toxicity on it in a manner that is generalized
across chemical space that is superior to simple descriptors. Also, transfer learning might be used: a
model that was trained on the known toxic compounds can be trained to forecasts the actions of the new
compounds with incomplete data. It can as well be extended to include the use of genomic and proteomic
data (in in vitro experiments of EC exposure) as part of the feature space which may show biomarkers
of an effect early to which Al can cling.
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The use of Al in mixture risk assessment is a very intriguing future opportunity. At any given time,
human beings are exposed to combinations of dozens of ECs. The one that we have is single-chemical
oriented. Nevertheless, it is possible to induce a model to forecast combined risk of mixtures when those
features represent an interaction or a co-exposure. This is not straightforward but maybe unsupervised
learning might detect some groupings of chemicals that recurrently co-occur (e.g. PFAS are often
removed mixtures of chemicals of varying lengths) and then a supervised model can be fit into them as
extra variables (such as mixture component of type A present). It is one of the frontiers that will not go
away easily. Finally, it is important to note that it is vital to keep validating and updating Al models
using new empirical data. Once new toxicology discoveries are made on emerging contaminants (as
was done in the case of microplastics, such as a new study finding that microplastic causes a particular
health effect in people), this can be fed back to update the model - e.g. the training labels should be
updated to capture new features (e.g. microplastic=1 is a special case), though ideally it should capture
why microplastic is a threatening contaminant, e.g. microplastic is capable of causing inflammation).
By so doing, the model will become a living utility, and will enhance through time and, hopefully,
become more predictive and reliable.

5. Conclusion

This paper measured the application of artificial intelligence to measure the risk of human health due to
new environmental pollutants. Our framework was a new machine learning method based on
information on chemical properties, toxicological bioactivities, and exposure indicators to predict the
likely chemical contaminants that will pose great importance to the human health. The AI model (and
more precisely the Random Forest ensemble) on a selection of representative emerging contaminants
performed encouragingly and was able to correctly identify known high-risk substances (including
PFAX and endocrine disruptors) and provide plausible predictions on additional less-studied
contaminants. The interpretations of the model showed the presence of the essential risk drivers most
intensively - the existence of the chemicals that were the most active persistently, bioaccumulative, and
disruptive to the biological systems. These results correlate with the current body of scientific
knowledge concerning environmental risks, however, most significantly, the Al method would offer a
more expedient and scaleable platform to filter and prioritize the host of pollutants that do not have
complete risk analyses.

Two implications to this work exist. To start with, it proves that Al is a useful supplemental tool in risk
assessment of environmental health. Machine learning models can be utilized to streamline laboratory
and epidemiological research by synthesizing various data into a coherent risk prediction, which can
help in prioritizing the issues of most concern and, consequently, allow identifying the threats to public
health in the environment more promptly. Such models can be used by regulatory agencies and
stakeholders to aid in decision making, such as in revising priority pollutant lists or to inform monitoring
programs to high risk substances whose behaviour is predicted using the model. Such a prioritization
criteria based on data is particularly applicable because the list of novel chemicals is continually
growing, and there are not enough testing capabilities. Second, the paper emphasizes the value of One
Health and interdisciplinary approach, in which computational models should utilize the data related to
environmental science (exposure data) and biomedical science (toxicological data) at the same time.
The above integrated feature set success in the prediction of risk confirms the argument that hazard and
exposure are two elements that should be factored together - which Al can also do smartly, by assigning
varying weights to numerous elements - in an effort to approximate the real-world risk.

Another aspect that we accentuate is the value of explainable Al in establishing trust and knowledge.
Nevertheless, the model was not a black box model in that it is possible to rationalize its results in terms
of toxicology through feature importance and SHAP analysis. Such a disclosure is essential when Al
suggestions are to be considered in terms of regulation, where such a solution is conventionally required
to use evidentiary science and capability-of-action insights. The Al basically summarized patterns of
which experts would concur (persistence bad, endocrine disruption bad, etc), which in our case gives a
sort of validation to the practice. Discoverability of such models as they are extended to larger datasets
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will continue to be of relevance - methods like global surrogate modeling or extracting rules in
ensembles might be used to provide insights that are easy to interpret.

Research directions to take in the future involve extending/generalizing the model to include additional
contaminants and additional finer health outcomes. As an example, instead of a high/low risk, future
models would project individual health outcome likelihoods (cancer, developmental toxicity etc.) when
conditioned on the correct data. The combination of human biomonitoring data and epidemiological
results will be a major improvement in facilitating the learning of Al as it will have the opportunity to
learn based on bench science, as well as real-life health outcome trends. Furthermore, collaboration of
mixture effects and cumulative risk via Al is a challenge that is far to play, yet a critical one, with man
being exposed to the cocktails of contaminants. The complexity could be addressed with the assistance
of techniques, such as multi-task learning (making predictions of more than one outcome
simultaneously), or integrating interaction terms in models.

it can be concluded that Al as one of the tools to assess the impact of emerging environmental pollutants
on human health is a timely and successful trend in research. Our paper offers a rough sketch of the way
such Al-implemented examinations may be implemented. The timely detection of possible dangers and
an explanation of the reasons why they are dangerous makes Al one of the key elements in tackling
upcoming contaminants. This will assist in trying to make sure that the public health protections remain
in a quick pace of introducing new chemicals with the changing outlook of pollution. In the end, the
connection between artificial intelligence and environmental health science is incredibly productive and
can ensure human wellbeing and help manage the wise use of chemicals in the future making the
information an action preventing it all.
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