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Abstract 

Early diagnosis of mental vulnerability is still a problem since most clinical evaluations are based on the subjective 

aspects of evaluation like self-report and not on the objective physiological indications. The idea of psychological 

resilience which is a fundamental protective factor against stress related disorders has been connected to the 

autonomic regulation and daily behavioral patterns, but the objective method of calculating on such a scale is yet 

to be established. This paper presents a multimodal graph neural network, which combines the wearable derived 

physiological signals to forecast trait level resilience and stress as well as state level. The ongoing heart activity, 

electrodermal activity, and motion data of adult participants were gathered and matched with resilient score proven 

validated scores. Participant specific graphs were created whereby physiological modalities were the nodes and 

the inter signal dependencies were the edges. Statistical analysis showed that there were significant physiological 

disparities that were related to resilience. High resilience group members had much better values of root mean 

square of successive differences and physical activity per day (mean difference on 1000 extra steps per day, p = 

0.003). The proposed graph neural network (GNN) performed well in classification tasks in terms of area under 

the receiver operating characteristic curve (0.80 +- 0.02) to differentiate high and low resilience, which was 

significantly better than that of logistic regression (0.60), random forest (0.65), and long short-term memory 

models (0.72), with the difference being supported by DeLong test (p < 0.01). Graph based learning also offers 

added benefits of discrimination and physiologically explainable output and thus can facilitate its future as a 

scalable and objective digital mental health monitoring and early risk stratification tool. 

Keywords: Psychological resilience, Graph neural networks, Wearable sensors, Mental health, Stress detection, 

Machine learning 

 

1. Introduction  

A significant challenge that is increasing in the world, worsened by chronic stress in the contemporary 

life, is mental illnesses that include depression, anxiety, and post-traumatic stress disorders [1,2]. Such 

conditions are usually underdiagnosed until they are severely debilitating day to day functioning [2]. 

One of the developing preventive measures is the constant checking of physiological and behavioral 

indicators with the help of wearable devices to reveal the existence of psychological distress in the initial 

stages [3-5]. Warmth devices such as smarty watches and physical fitness bracelets will have an ability 

to monitor bio-signals (heart rate, exercise, sleep, electrodermal activity, and so forth) of a person in 

real time and without any invasive access [2,6]. These signals have objective proxies of stress and 

affective states, such as heart rate and sweating (highlighted by photoplethysmography (PPG) and 

galvanic skin response sensors), are acute responses of stress [7-9]. Through these streams of data, 

scientists are striving to create digital variants of mental health biomarkers that can overcome the 

constraints of the infrequent clinical monitoring and symptoms recalling through self-report data [10]. 

In the mental health construct, psychological resilience is one of the constructs that have been focused 

on as an important protective construct [10,11]. Resilience is described as the ability to get through 
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tough situations or recover after enduring hardships and alleviating the effects of stress on psychological 

health [12-14]. High-resilience persons are also more likely to stay psychologically healthy during times 

of stress, and low resilience brings the susceptibility to such illnesses as depression and anxiety [3,15-

17]. Historically, the measure of resilience has been performed in terms of self-report measures (i.e. the 

Connor-Davidson Resilience Scale) that assess the perceived capability to cope with stress. Such 

measures are good but they are fixed and subjective [18-20]. The physiological aspects that can be 

monitored in order to determine physiological correlates of resilence are becoming of increasing interest 

[21-23]. Previous studies put forward that heart rate variability (HRV) - the alteration in the heart 

rhythms through changes in the beat-to-beat interval can be an objective resilience measure. Greater-

parasympathetic (relaxing) of the heart, indicated by a high vagally-mediated HRV has been associated 

with the laboratory studies of emotion regulation and stress adaptation. E.g. people that have a higher 

resting HVR demonstrate enhanced adaptability of cortisol and cardiovascular actions to challenges 

generated by stress, indicating that HVR is a biomarker of mental health resilience [9,24,25]. These 

observations suggest that the wearable sensor data of resilient individuals could have unique features, 

including smoother heart dynamics, quicker physiological recovery of stress, or well-adjusted 

sleep/activity patterns [26-28]. In fact, the theory of physiological resilience may be operationalized to 

mean how quickly an organism returns to equilibrium following perturbation [6,29-31]. Recent 

longitudinal wearable data research revealed that older adults take a long time (loss of resilience) to 

recover following fluctuations of everyday activity and this has been associated with aging (and 

mortality risk). Psychological resilience may also be expressed in less time to achieve normalization of 

heart rate or electrodermal activity of the body after stress in young healthy populations [32,33]. These 

are delicate dynamics of signals that cannot be analyzed by simple triggers based on threshold. 

Accelerometers (ACC) help to identify the physical activity of a patient and their sleep waveforms. The 

modalities present varied access to the psychophysiological condition. Incorporating parasympathetic 

(increasing heart rate and EDA) and depressive (decreasing activity and irregular circadian rhythms) 

symptoms, all of these responses to stresses are likely to be activated by stress. With the help of these 

mixed signals, we will be able to create a more holistic image of the psychological state of an individual 

[34-36]. The literature indicates that multimodal fusion leads to greater accuracy in identifying 

depression, anxiety, or cognitive load: a physiological signal proves more accurate than a behavioral or 

contextual signal, and a combination of both signals is even more accurate than any individual signal 

[16,37-40]. Recent systematic reviews indicate that studies of mental health monitoring using multiple 

biosensors with AI have an increasing trend, emphasizing the understanding in the community that there 

is no single signal that could be used in complex situations. The multimodal data are however also 

problematic - the interactions among signals may be context-dependent and non-linear. The example is, 

in a case of an exercise; both heart rate and accelerator activity increase (positive relationship), whereas 

during a panic attack heart rate could explode without movement. Such conditional dependencies may 

not be elicited through traditional machine learning methods which merely concatenate the features or 

consider the sensors one at a time. 

Graph neural networks have become a trend in deep learning, which works best with data whose 

relationships are complex [41-42]. In a graph model, the data entities are shown in the form of a node 

and the links between these nodes as an edge. It is highly adaptable to wearable multimodal data, in 

which individual sensor streams may be regarded as nodes in a physiological network, and the statistical 

or functional relationships between sensors (e.g. correlation between heart rate and EDA signals) can 

be regarded as edges. In comparison to sequence models or models based on vectors, GNNs are able to 

acquire latent patterns of interactions, and different connections may have different importance based 

on the state. According to recent surveys, GNNs can be used to apply context-dependent sensor fusion: 

the network can, e.g., learn to boost the importance of electrodermal activity nodes, when under stress, 

and motion sensor nodes, when moving around, by dynamically changing sensor weights. This dynamic 

merger is consistent with domain knowledge, the use of skin conductance would be most informative 

in emotional arousal whereas accelerometry plays a central role in identifying the occurrence of exercise 

or sleep. Moreover, GNNs are flexible to incorporate more information in the form of nodes or edges, 

environmental setting (context) or social networks (interpersonal interactions) to which mental health 

is applicable. GNNs are still new in the field of predicting mental health conflict with wearable sensors 
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data but have shown promise in different other areas, such as brain connectivity analysis and health care 

risk prediction. Remarkably, researchers came up with a multimodal fusion GNN creating a model that 

can integrate neuroimaging and clinical data to diagnose depression with around 79 percent accuracy 

and includes biomarkers of brain connectivity that characterizes depression. This shows how graph-

based learning can identify some obscure patterns in multifaceted biomedical information. We assume 

that one can execute a corresponding procedure to wearable sensor streams and anticipate psychological 

fortitude and mental well-being states which inherent complex relations between physiological 

indicators throughout a timeframe. 

The development of digital sensing and machine learning to enhance mental health has some gaps that 

are highlighted. To begin with, the construct of resilience has not been experimented so much in sensor-

only research. Recent researchers analyzed healthcare workers and discovered that machine learning 

models (gradient boosting) could be used to rank high and low resilience people, using Apple Watch 

data, with the AUC value of around 0.60. This implies that the signal characteristics employed (which 

most probably were heart rate and activity measurements) by themselves did not have much predictive 

power. More elaborate representations of features or later sensor modalities may be required to represent 

the complicated phenotype of resilience. Second, in this field, there are no ways to integrate multimodal 

time-series in an effective way. The majority of the previous studies involved either feature-level fusion 

(a mere combination of all features into one feature of a single vector) or ensemble models, which do 

not fully utilise the inter-sensor relationships. Graph neural networks help present a way to eliminate 

this limitation by explicitly defining the multimodal data structure. More importantly, GNNs can not 

only be used to make predictions more accurate but also more interpretable: when we take in the weights 

of learned edges or attention scores, we may understand which of the physiological links will best 

predict resilience or stress. This is congruent with the push of explainable AI in health monitoring such 

that clinicians may be able to trust new model outputs and interpret them. 

This paper will contribute to improving the current state of wearable mental health analytics by 

proposing a multimodal sensor-based neural network-based solution capable of forecasting 

psychological resiliency and mental health conditions based on multimodal sensor data. To the best 

knowledge, it is the first publication to explicitly address the research question of predicting resilience 

based on wearable signals via graph neural networks. We discuss the following objectives: 

 (1) Find a new way to mechanize multimodal physiological data of a person as a graph that would 

provide the correlation of sensor modalities and time. 

 (2) Train and test a graph neural network model that has been trained on this representation to give 

predictions of resilience (as measured by standardized scales) and acute psychological stress (as a 

representative mental health state). 

 (3) Perform comparison between the performance of the proposed GNN and classic methods (e.g. deep 

LSTM or random forest classifier) to determine the improvement. 

 (4) Discover predictions in the model, including which signals and links have the greatest contribution 

and discussing them in connection with current psychophysiological data. Our research work has both 

methodological and practical contribution. At an algorithmic level, we provide a framework that is built 

upon time-series features extraction, a graph-based data fusion, and end-to-end deep learning-based 

trend prediction of mental health. In practice, our findings show stronger prediction of resiliency and 

stress, which would allow continuous surveillance systems to detect individuals who are prone to 

unfavorable mental health outcomes and prior to the development of clinical symptoms. Our work also 

preconditions the creation of the personalized feedback systems that could identify problems besides 

assist with the development of the resilience as a modifiable factor that can be influenced by training 

and other interventions. The remainder of this paper elaborates on dataset and chart generation 

methodology, GNN architecture and training process and then the results of the experimentation and 

the ramifications and directions. 
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2. Methodology 

Constant sensor streams were divided and the processed to derive the efficient features to analyze them. 

We used sliding window method, with window length of 1 minute (long-term features of the signal) and 

1 hour (long-term trend features of the signal) with sufficient overlaps (50% overlap in minute windows) 

between the windows to trade-off time resolution and stability of features. Each of the windows yielded 

a set of summary features (means of heart rate) in each modality: In the case of heart activity, we have 

computed mean heart rate (HRmean) and various heart rate variability indices (e.g. root mean square of 

successive differences RMSSD and low-frequency/high-frequency power ratio) which indicate 

autonomic balance. Out of EDA, we obtained data on features including the tonic skin conductance 

level (SCL) and phasic driver measures (e.g. total skin conductance responses (SCR), SCR count, and 

SCR amplitude), measures of overall arousal and local burst of sympathetic activity. Essentially, we 

used accelerator information to determine mean acceleration, number of steps (assuming that the 

window size is large enough), and one of the categories (e.g. sedentary or active) based on some 

threshold of the number of activities. In longer hourly windows, we also obtained characteristics, such 

as the total amount of steps per hour, minutes of moderate-vigorous activity and an approximate 

determination of the sleep quality (during nighttime) based on movement-based sleep detection 

algorithms. To derive ciradian rhythm characteristics (e.g. amplitude of the diurnal variation) of skin 

temperature, smoothing was done to eliminate the features of daily circadian rhythms of skin 

temperature. 

All the time-series were synchronized and aligned to the daily stress reports. To incorporate stress 

classification models (under the premise that the overall stress in a day is reflected in the physiological 

patterns of that day), on a 1-minute window we attached the stress level of the corresponding day. As 

much as this adds noise (as stress is not always the same throughout the day), it gives a weak indication 

of the daily stress condition. Windows that were gathered in case of self-report high-stress days ((rating 

≥ 7). 7 were identified as cases of "stress" and those of the lower days (rating ≤ 3) as low-stress days. 

3) were marked as "non-stress." Medium days (rating 4-6) were not included in training so as to enhance 

class separability and this was utilized later to test generalization of its models. To be resilient, given 

that it is a person-level (baseline) measure, we inputted each participant individual resilience score or 

group label on each of the windows of a particular participant during training the resilience prediction 

model. In practice, we did not treat the different windows at a time; instead, we consolidated all the 

entire 30 days of individual participants into one graph representation (discussed below) to predict 

resilience, so as to obtain long-term trends. 

Before the feature computation, conventional preprocessing methods were used: noisy data (because of 

motion artefacts or device off-body) were found and discarded by a combination of rules based on 

threshold (e e.g. acceleration near to zero during a long period signalifying the removal of the device) 

and rules based on outliers on physiological signals (e e.g. heart rate greater than 200 bpm almost 

certainly artefact). The further data were z-score normalized individually per participant across sensors 

to bring about individual variations in baseline levels (e.g. each participants heart rate characteristics 

were normalized towards the respective mean and standard deviation, without changing the relative 

variation). We also used normalization between the participants where needed to model at the population 

level and did this by dividing the participants into a training group and a test group to eliminate the 

problem of leakage. 
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Figure 1: This Schematic workflow (presenting the end-to-end pipeline of resilience prediction: between 

multimodal wearable acquisition (HR, EDA, ACC, TEMP) and graph construction and GNN modeling. 

gives an overall pictorial outline of the data pipeline between wearable sensing, data preprocessing and 

graph neural modeling. It is a statistical explanation of the way raw physiological streams are 

transformed into graph nodes and edges representing the correlation coefficients which are structured. 

The grayscale architecture focuses on showing the direction that the flow takes between acquisition and 

inference. This figure contributes to the reproducibility requirements of computational health research 

by making the readers have the conceptualization of data transformation processes. 

Graph Construction: One of the highlight contributions of our approach is that it converts multimodal 

time-series data into the form of a graph structure, whose value is entered into the GNN. We have used 

two scale graphical representation: (1) Intra-window graphs by the level of short time windows (a one-

minute segment), and (2) the global graph of each participant which connects various time windows or 

summary nodes. As a graph to simplify analysis, though, we consider the participant-level graph, written 

G p, of participant p, which is an expression of the multimodal physiological profile of the particular 

participant during the whole period of monitoring. The node set of the participants graph in each 

participant graph G-p (V, E) is comprised of nodes representing different sensor derived feature streams. 

We are defining a single node of each of the major or sub-modality of interest. Namely, we added the 

following nodes; HR/HRV node - cardiac features; EDA node - electrodermal features; ACC node - 

activity/sleep features; and TEMP node - skin temperature (circadian rhythm). We added an external 

context node, too, to encode the extrinsic context (ex: time of the day, or day of the week), and can 

affect all signals; this node is joined to all modality nodes with directed morphemes (ex: whether the 

part was at a work hour or a rest hour). There is a feature vector of the data of each modality in the 

participant that is attached to each node. To predict the resilience at all times, we applied the full dataset 

of each of the participants to calculate global summary features at the node. The feature vectors in the 

HR / HRV node would, as an example, have the average resting heart rate of a participant, global HRV 

values (e.g. for 24 -h RMSSD), and possibly HR amplitude. The feature of EDA node may include 

general 90 th percentile of SCL and mean frequency of SCR during the waking hours. CC node feature 

comprises of mean daily steps taken, mean time spent as sedentary, etc. These attributes summarize the 

long term dynamics of every signal giving the GNN a point of departure to acquire inter-modal 

interactions. 

Relationships between modalities between nodes are expressed as edges 𝐸. The GNN was trained to 

learn any possible connection between the physiological nodes by defining an undirected edge between 

all the pairs of physiological nodes (and creating a fully connected graph of the modalities). In order to 

begin with initializing weights on the edges, we have calculated the empirical Pearson correlation of the 

time-series of any two modalities during the 30 days. As an example, we used the calculation of the 

correlation between hourly EDA level and hourly heart rate of the participant; strong positive correlation 

would suggest that high heart rate rates are likely to be accompanied by high arousal, and possibly, 

stress or physical activity, and weak positive or negative with independent and inverse relations. These 

correlation value (or its adequate feature) served as features on the edges. Definitely, between two nodes 

at the modalities,{𝑖 𝑎𝑛𝑑 𝑗 on node i and j, we obtain the correlation coefficient: 
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𝑖𝑗  =  𝑡 = 1𝑇𝑋𝑖𝑡 − 𝑋‾𝑖 𝑋𝑗𝑡 − 𝑋‾𝑗𝑡 = 1𝑇𝑋𝑖𝑡 − 𝑋‾𝑖2 𝑡 = 1𝑇𝑋𝑗𝑡 − 𝑋‾𝑗2 (1) 

The t in this case refers to the time points (or aggregated timepoints) within the monitoring time, and 

the BarXi denotes the mean measurements over time of modality i. The use of this rho represents the 

first edge attribute which encodes the magnitude of linear relationship between the modalities i and j. 

Indicatively, in the event that the participant has a high correlation between his or her HR with ACC 

(where the correlation is close to 1), then most of the elevations of heart rate can be attributed to exercise; 

in events where the correlation between HR and EDA is high, then changes can be observed as possible 

stress responses. We further gave each edge a binary type label that tells it whether it links physiological 

nodes to context node or to two physiological nodes, such that the GNN has the potential of learning 

varying weights between edge types. The edges of the context node had no correlation but instead an 

arbitrary value of 1 since they are intended to consist in a consistent manner of connecting context to 

all modalities. 

 

Figure 2: This is a representative participant graph of the multimodal nodes (HRV, EDA, ACC, TEMP, 

context) and weighted inter-sensor edges which do transform the abstract graph concept into a 

physiological network. The thickness of edges indicates Pearson correlation size between modalities; 

the dark color indicates higher coupling. It statistically shows intermodal dependencies that form the 

basis of the learning ability of the GNN. It presents the dynamics of autonomic-behavioral interaction 

as clinically obtained to provide a system level model of the physiology of resilience. 

Graph Neural Network Architecture: our GNN model works with the participant graph, G (p ) to give 

resilience outcomes and stress outcomes predictions. The architecture comprises of two graph 

convolutional layers and a readout and fully connected prediction layer. The convolutional layers took 

the Graph Convolutional Network (GCN) formulation by Kipf and Welling, because it is efficient and 

it allows the use of weighted adjacency information. In the GCN, node features are updated by the 

current layer courtesy of the information obtained by the neighboring nodes. Taking the rule of 

propagation of a single GCN layer mathematically, it can be expressed as follows: 

𝐻𝑙 + 1  =  𝜎𝐷 − 12 𝐴 𝐷 − 12 𝐻𝑙 𝑊𝑙 (2) 

Here, each layer node feature matrix is denoted by the matrices: H (l) = R N x dl: theself-connection 

variant of an adjacency matrix, A, plus added identity matrix, I, and diagonal degree matrix, D on A. 

This operation is an effective weighted average of each node of the neighborhood features (both 

including itself) and is then transformed linearly. Notably, adding edge weights in the form of a weight 

matrix, called A (we selected the weight to be the inverse of physiological importance between two 

nodes, i.e. we use the weight of an edge, i.e. 𝜌{𝑖𝑗}) will make the GCN aggregations depend on tie 

strength, i.e. strong physiological connections between nodes will enable more information to flow 

between the corresponding nodes in the network. The first GCN layer works on the original node feature 

matrix H0 (formed by the extracted features of the each modality) and generates a hidden representation 

of size N x d1 (we use d1 = 16) denoted by H 1. The second GCN layer then creates H2 of size N d2 

(where d2 = 8), the last group of node embeddings. 
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We followed the same steps after the GCN layers; we followed the graph readout operation to retrieve 

one representation of the overall participant graph. We took a basic readout based on mean pooling: we 

mean all node feature vectors in H2 to obtain a graph-level feature vector h 2 graph in R d 2. We also 

tried weighted sum pooling and the emphasis constituting pooling, but mean pooling seemed to be 

sufficiently good as there were a limited number of nodes and thus our normalizing features. Such an 

attention pooling based on relevancy of nodes would be helpful in case some modalities were much 

more informative than others.) This is a graph-level representation of the heterogeneity which is a 

representative of the physiological profile of the participant in their entirety. 

Lastly, to do prediction, we inputted the graph of h0(Finally) with the fully-connected neural network 

head to produce the desired outputs. As we have 2 target outcomes, resilience (scalar or binary high/low 

label) and daily stress (this may be classified or regression problem, so we used two heads which were 

resilience and stress). The resilience head is made of one neuron (to regress on the resilience score), or 

a small sub-network whose terminal is a sigmoid (to classify high and low resilience). The design of the 

stress head will result into a probability of high stress on a day or window. Virtually, since resilience is 

measured only once per participant, we just train the resilience head on the graph of the participant (a 

single label per graph), but the stress head can be trained on many instances per participant (assuming 

we count an incidence of each day or window to be an instance). Our two-stage training method to 

balance this in training was to firstly train GNN and resilience on the particle graphs (one per 

participant), and freeze the GNN layers and train a second stress classifier with many windows on the 

node embeddings or the graph embeddings. A second method that we experimented with was to include 

stress windows as independent graphs interrelated with hierarchical graph-of-graphs model (each days 

of the participants was a sub-graph that was related to the larger graph); for simplicity, however, we 

describe results of the two stage model which performed better. 

A joint loss function that considered the two tasks was used to train the model. In resilience regression 

we have employed mean squared error (MSE) loss: 𝐿𝑟𝑒𝑠 =
1

𝑝 ∑ 𝑦̂−𝑟𝑒𝑠𝑝−𝑦𝑝
1
𝑝=0

 

counting resilience score )2. We have initially set alpha = 1 and beta = 1; we also did not find any 

significant improvement in result by tuning these values, perhaps due to the nature of the training that 

we practiced which was mostly independent as detailed. We used Adam optimizer and the learning rate 

of 0.001. It was trained using Python and PyTorch Geometric library to implement GNN. Free 

information on resilience was done with 5-fold cross-validation, that is, at the participant level, where 

cross-validation is done by training on 80% of participants and testing on 20% of participants, with 180-

degree rotation. To detect stress, in each fold we divide the training subjects data further into sub-train 

and validate data so as to prevent overfitting to within-subject trend. Binary cross-entropy was used in 

the classification of binary resilience. To establish the stress, we applied cross-entropy loss to the classes 

of stress vs non stress individually. In order to counteract the effect of the two activities in the training, 

the overall loss was a weighted sum: L total = and alpha Lres + Beta L stress. 

 

Figure 3: Two-layer graph convolutional network with node-wise aggregated, mean pooled and dual 

prediction head stress and resilience. Weighted and adjacency input data to convolutional propagation 
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weighted dual outputs. It is a quantitative measure of the feature dimensionality changing (16-8 units) 

and the bifurcated prediction pathway. Flow hierarchy and the visual noise are underlined by the 

grayscale tones. The rationale of the dual-task training is statistically contextualized and has its base on 

this model diagram. 

Baseline Models: In order to compare the effectiveness of our GNN alternative, a number of baseline 

models were used: (i) feature concatenation and deep neural network model, where all the features 

extracted by all modalities of a participant are concatenated into a single vector and introduced into a 

fully-connected neural network (two hidden layers of size 16) that make a prediction based on resilience. 

This is a test of whether a traditional multi-layer perceptron (MLP) can be trained to learn using the 

same features without a graphical representation. (ii) Long Short-Term Memory (LSTM) recurrent 

neural network which is fed with the time-series of every participant. The LSTM was fed a sequence of 

summary features on a daily basis (e.g., daily mean HR, daily steps, daily mean EDA etc.) to predict 

resilience at the end of the sequence. The LSTM possessed 32 units; it was then followed by a dense 

layer. (iii) Aggregated feature Gradient Boosting Machine (GBM) and Random Forest models. These 

classic machine learning models have been implemented in the previous resilience prediction research. 

We have trained a 100-tree random forest and an XGBoost implementation (GBM) on the same 

participant-level data (heart, activity, etc. stats). (iv) In the case of stress detection, we have compared 

with a logistic regression employing HR features only, one with EDA features only and one with early-

fusion MLP with both. This is useful in isolating the value of fusing signals using a graph. All the base 

models were optimized by grid search over the hyper parameters (number of layers, neurons, tree depth 

etc.) using the validation sets through the cross-validation. 

Statistical analysis Plan 

Other than the performance measurements provided by the model, we undertook some statistical 

classification to make sense of the data and outcomes. We have tested Pearson correlations of sensor 

feature values of main participants and resilience scores (Table 2). T-tests were also done to compare an 

average of physiological measures between the high-resilience and the low-resilience groups. As an 

illustration, we compared the average level of HRV of high-resilience and low-resilience people and 

detected that high-resilience individuals had a significant increase in the average but a low-resilience 

individual had a low-average HRV. We have computed the conventional measures in determining the 

performance of classification, including accuracy, precision, recall, F1-score, and area under the 

Receiver Operating Characteristic curve (AUROC). AUROC is a threshold-free statistics that works 

well with data with imbalanced classes and we specifically use it in the task of resilience classification 

because the median split between high and low resilience tended to give moderate class balances (We 

had 55 high and 65 low resilience-participants). We condition mean statistics in cross-validation folds 

and we calculated bootstrapping participant 95% confidence intervals. In order to evaluate whether the 

performance differences are significant, we applied the DeLong test of the performance (AUROC) of 

our GNN vs. the baseline ROC curve, and the paired performance (McNemar) test on the paired errors 

of prediction to evaluate the difference in the accuracy. The level of significance used was p<0.05. All 

of the statistics was done with R and Python. 

With the integration of these approaches, we will get a strong test of the proposed GNN approach, not 

only regarding the predictive accuracy but also in the scientific understanding. Our findings and 

statistical analysis results will be introduced next, and the implications of the presented findings to the 

mental health sensing field will be thoroughly discussed. 
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Table 1. Participant characteristics and summary of collected data (N = 120). Values are mean ± standard 

deviation or percentage. 

Characteristic Value 

Age (years) 35.2 ± 9.8 

Female (%) 55% 

Monitoring duration 30 days per participant (average) 

Wearable device Empatica E4 + chest ECG patch (subset) 

Mean resting heart rate (bpm) 72.5 ± 8.3 

Mean daily RMSSD (HRV, ms) 55.4 ± 18.7 

Mean daily step count 8460 ± 2900 

CD-RISC-10 resilience score 30.1 ± 5.0 (range: 15–40) 

High resilience (score ≥ 30) 55 participants (46%) 

Low resilience (score < 30) 65 participants (54%) 

Mean daily stress (0–10 scale) 4.3 ± 2.1 

High-stress days (rating ≥ 7) 18% of days (across all participants) 

Low-stress days (rating ≤ 3) 34% of days (across all participants) 

 

3. Results  

Physiological Dissimilarities related to Resilience:  

We initially investigated the relationship between baseline resilience and a variety of wearable-based 

physiological values. The table 2 is the summary table of the Pearson correlation coefficients between 

the key features and the resilience scores between the participants. A definite trend was observed: the 

heart rate variability (HRV) was positively related to resilience (r = +0.33, p<0.01), which meant that 

the persons with a higher resilience were prone to have a higher vagal tone and cardiac dynamics. It is 

worth noting that RMSSD - an index of Hrv short term - was an average of 15-20 ms in high-resilience 

group compared to low-resilience group (high: 63 ms, low: 47 ms, p<0.01) on average. This coincides 

with the previous information that the vagally-mediated HRV is an indicator of the ability to control 

stressful responses in oneself. It is possible that the people with high resilience are more robust in their 

parasympathetic, which allows them to recover faster on stressors and this comes out as higher HRV. 

On the other hand, resilience was negatively correlated with resting heart rate (r = -0.25, p<0.01). More 

resilient members of the group were marginally less at rest, about 5 bpm on average, than less resilient 

counterparts, and this agrees with a more relaxed physiology and the superior fitness of the 

cardiovascular system. 

Resilience was also connected to the physical activity: the number of steps per day was moderately 

positively related (r = +0.29, p=0.003). The high-resilience participants were more active and completed 

more steps on average per day being around 1,000 steps more than the low-resilience counterparts 

(9,200 vs 8,200 steps). This is an indication of a relationship between resilience and healthier behavior 

patterns or energy levels, but the causality may be in both directions (activity may create resilience or 

resilient individuals may be active in stressful conditions). Weaker relationship was observed with sleep 

quality, which was measured through average duration of sleep (r= +0.18, p=0.04). More robust 

individuals were also found to sleep a slight longer or rather more regular, although this was not found 

to be significant enough. Probably there is a relationship and/or effect on resilience by the quality of 

sleep, but the range of sleep hours of our sample was not wide (the majority of the participants slept 

between 6-8 hours). 

These correlational observations support the multi-dimensionality of resilience: it seems to be related 

to an efficient autonomic functioning (low HR, high HRV) and good lifestyle (physical activity, proper 

sleep). However, the individual characteristics themselves, on their part, were only slightly correlated 
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with resilience (0.33), which reveals that no one metric can be regarded as an ideal proxy. This is the 

reason why they should have a combined model that is able to learn a holistic pattern based on all signals 

at the same time. It is this that our GNN is intended to accomplish through the way that it combines 

these features and interrelations between these features. We also add that, despite the fact that correlation 

does not mean causation, the nature of the identified associations is consistent with theoretical 

anticipations and give face validity to our dataset. Indicatively, the large correlation between resilience 

and HRV provides evidence of the hypothesis that HRV is a mental health resilience biomarker. Equally, 

the association of exercise and mental health (commonly found in the literature) is also expressed in 

data. 

Table 2. Pearson correlations between selected sensor features and resilience (CD-RISC-10) scores (N 

= 120). A positive r indicates higher feature values in more resilient individuals. 

Feature (Modality) Description (units) r (Resilience) p-value 

Resting heart rate (HR) Mean heart rate at rest (bpm) –0.25 0.007 

HRV (RMSSD) Heart rate variability (ms) +0.33 0.001 

Daily step count (ACC) Average steps per day +0.29 0.003 

Sleep duration (ACC) Hours of sleep per night +0.18 0.045 

Mean EDA level Avg. skin conductance level (µS) –0.12 0.18 

EDA stress reactivity SCR count during high stress –0.20 0.034 

Sedentary time (ACC) Hours idle per day –0.22 0.016 

 

 

Figure 4: The Heatmap that reflects Pearson correlation coefficients between the major wearable-

obtained measures (HRV, HR, EDA, activity, sleep) and resilience scores. It summarizes Table 2 into a 

comprehensible matrix underlining statistically significant relationship (p < 0.05). Higher positive 

values are represented in the darker shades; the negative or non-significant values are represented in the 

light shades. Visualization contributes to the quick understanding of multidimensional associations to 

justify the input of the model. It combines rigour of statistics and the intuit of clinical incorporation. 

Table 2 demonstrates that the features of the electrodermal activity (EDA) were not so strongly related 

to resilience (mean EDA was r = -0.12, n.s.). It does not come as a surprise since baseline resilience 

relates more to trait-level capacity than that of EDA that is highly situation-based. Nevertheless, there 

was a minor negative correlation between one EDA-based measure - stress reactivity, which was 

estimated by the frequency of spontaneous SCRs (skin conductance responses) on the days of high 

stress (r = -0.20, p<0.05) implying that less resilient individuals had a slight exaggerated electrodermal 
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response when under stress (more frequent SCRs). This observation is consistent with the idea that the 

reduced resilience can also be related to the increased physiological reactivity to stressors. Nevertheless, 

this association is not very strong; a high number of low-resilience individuals did not always respond 

to EDA large, which implies fluctuations and the impact brought by other variables (e.g. the type of 

stressor, the difference in the activity of sweat glands in individuals). 

Overall, the univariate researcher suggests several weak-to-moderate variables correlates of resilience, 

which justifies the inclusion of a multivariate model of prediction. The multivariate nature of these 

patterns, including interactions (e.g. perhaps there is some special predictive ability of resilience of high 

HRV and high activity in combination with each other vs. alone), are best captured by our graph-based 

model. Next we estimate the quality of our GNN on predicting resilience and stress and compare it to 

control models. 

Predictive Resilience Classification Performance 

We tested the capabilities of the models in classifying the participants as high or low resilience 

(according to median division of CD-RISC-10). Table 3 demonstrates the cross-validation folds 

performance results of our proposed GNN model and cross-validation baseline methods. The GNN 

reached high performance in terms of the AUROC of 0.80 which is much higher than that of the logistic 

regression baseline (AUROC 0.60) which replicates the performance reported in previous literature and 

also outperforms the deep LSTM (0.72) and the random forest (0.65) models. The positive increase of 

the AUC between 0.60 and 0.80 is very significant (p<0.01 according to the tests developed by DeLong) 

which means that the model significantly improves the ability to distinguish between resilient and non-

resilient individuals. Practically, at the optimal threshold set by the Youden, the GNN had a high 

accuracy of around 75% and the F1-score of GNN was 0.75, compared to the optimum baseline (LSTM) 

at around 68% and F1 0.70. Accuracy (not indicated in table) of the high-resilience GNN class was 0.78, 

and 0.72 which is a good balance between sensitivity and specificity at about 75 per cent. On the 

contrary, the logistic model showed close to chance performance (58-60% accuracy, F1 =0.60), and this 

result is in line with the prior contribution that established only moderate predictive capacity in wearable 

data with standard ML. It is encouraging that our LSTM baseline at least marginally improved (AUC 

0.72) because there is temporal information present in the series of features (e.g. trends over days) that 

can be exploited by a sequence model but this did not perfectly adapt the complexity bring about by the 

GNN. Our good performance of the GNN can be explained by its capability to utilize cross-modal 

interactions: an example: the GNN can be trained to learn that a pattern of high physical activity and 

normal responses to EDA at the same time predicts good coping, whereas both an LSTM and an RF 

would need to learn such an interaction implicitly or consider new combined features. When a graph 

model is created that has a node (such as HRV) which has a strong bond with another node (such as step 

count), the same may impact the prediction together. 

Table 3. Model performance for classifying high vs. low resilience. Metrics are averaged over 5-fold 

cross-validation (std. errors in parentheses). The GNN outperforms all baselines significantly (AUROC 

improvement > 0.08 over next best, p<0.05). 

Model AUROC Accuracy (%) F1 Score 

Proposed GNN 0.80 (±0.02) 75% (±3%) 0.75 (±0.03) 

LSTM (time-series) 0.72 (±0.03) 68% (±4%) 0.70 (±0.04) 

Random Forest 0.65 (±0.04) 62% (±5%) 0.62 (±0.05) 

Logistic Regression 0.60 (±0.02) 58% (±3%) 0.60 (±0.03) 
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Figure 5: In this figure, the composition of the performance of proposed GNN versus LSTM, Random 

Forest, and Logistic Regression is statistically visualized and creates superiority units in terms of all the 

three measures of performance as (AUROC) = 0.80 +- 0.02) and variance is represented in bar graphs 

with confidence flows. It provides a straightforward interpretation of effect sizes and significance (p < 

0.01 according to a test by DeLong). The grayscale palette is not only clear enough to be reproduced 

using print but also it maintains differences within the models. This quantitative performance will 

support the performance arguments. 

In addition to aggregate measures, we examined the errors of the model in order to gain knowledge. As 

CT only shows that the GNN confusion matrix was confusing (not shown in table), among 55 high-

resilience individuals, 40 people were correctly identified and 15 people were falsely identified as low 

(and the same, falsely identified as high, 10 individuals). Even the so-called resilient individuals that 

ended up wrongly classified were, in many instances, only slightly above the median (e.g., 31-32, rather 

than high scores, nearer to 40) in their resilience, which makes sense given that borderline cases were 

the main source of failing of the model. Similarly, there were also a few "low" resilience individuals as 

identified by the model as high resilience sensor profiles (such as a person with low self-reported 

resilience, but very high fitness and stable physiology turned out to be estimated as resilient by the 

model). This leads to a valid point, the model could be pinpointing physiological resilience despite the 

fact that the self-perception of a person does not match. Indeed, the difference observed would send me 

back to research - maybe those persons have an underexploited resilience (or vice versa) or that they 

are influenced by the psychological aspect (such as pessimistic bias) that would cause them to report 

being less resilient. Although the objective of our model is not to substitute self-report, these instances 

show that the sensor-based one may provide some independent point of view. 

In order to verify that the GNN was actually benefiting from multimodal interactions, we also provided 

ablation studies by training the GNN with all modality nodes ablated one modality node at a time. The 

deletion of the HRV/HR node brought about the greatest decrease in the AUROC (0.80 to 0.72), which 

validates that features of the heart are the most informative single modality in resilience. ACC node 

(activity) and EDA removal had similar effects (decreased AUC to 0.76 and 0.78 respectively). Deleting 

the context node (carrying time-of-day information) did not alter the resilience prediction results 

significantly (as it is anticipated because resilience is not a time-related phenomenon). This informs us 

that though HRV plays the main role, conglomeration of heart and activity data brings on a superior 

output in comparison with either of the two; this validates our previous correlation claim that physiology 

together with behavior matters. Surprisingly, though, EDA alone was not tightly related to resilience, 

the inclusion of the latter in the graph added a small advantage. This may be simply due to the 

observation of a pattern by the GNN in which low-resilience individuals may have unrelated HR and 

EDA signals (sign of dysregulated stress response), and the high-resilience individuals very well can 

have some pattern. In fact, we also observed that in some participants constituting self-reported stress 

conditions, high-resilience individuals were moderately increasing EDA and an adequate HR increase 

and some low-resilience individuals were either exaggerating EDA relative to increases in HR or 

attenuating it altogether. These relative patterns can possibly be summarized by the graph model through 

weighting edges, e.g. an edge between HR-EDA would contribute to making one resilient (with a well-
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synchronized physiological response) and an aberrant relationship between HR-EDA would be an 

indicator that the model is learning to cluster under the lower-resilience category. 

Multimodal Graph Detection of Acute Stress:  

In addition to baseline resilience, our framework also attempted to terminate short-term mental health 

conditions - in this case day to day stress. Our way of formulating this was with days of high stresses 

and days of low stresses based on the wearable data of a certain day. To test this performance of the 

GNN, we formed day-level graphs (day as a modalities graph) and applied a similar GNN model to the 

day-level graph to determine whether that day was a high stress day or not. To compare, we applied 

models of a simpler nature to individual signals. Table 4 provides summarised results. In the GNN which 

pooled HR, EDA and ACC data, the accuracy level reached 85 percent in separating the high-stress days 

(stress rating < 7) of low stress days (rating 3), and an F1-score of 0.86 of the stress class. However, 

when they used only heart rate data (with an LSTM or threshold method), their accuracy was almost 

75% and with only EDA it was almost 78%. The highest accuracy at 80% was achieved when a logistic 

regression was used allowing both HR and EDA characteristics (early fusion). In this way, the graph 

model enhanced the detection by 5-10 points. This gain is significant at a real-world level - such as false 

negative (not alerting to a high-stress event) dropped by 30% with GNN over HR-only implementation, 

which is relevant to a system that is meant to give alarms or interventions when stressed up. The 

accuracy of the GNN in stress detection stood at 0.84 and recall at 0.88, which means that GNN 

significantly detected majority of the tension days with minimal amount of alarm. Since wearable stress 

detection is a thoroughly researched issue, the accuracy that we have obtained can be compared with 

the results of literature in a controlled environment, and can be considered slightly positive when applied 

to real-world data. We observe that we have broad labels of high vs low which relied on self-report; a 

more fine or objective measure of stress might change the difficulty. However, the presented results 

provide evidence of the intermodal efficiency: cardiovascular stress mechanisms can be represented by 

heart rate, electrodermal arousal by EDA, and accelerometer could put everything into perspective (high 

increases in HR can be related to exercise (not stress-related) or not). It is possible that the patterns 

which were learned by the GNN were like the following: in the case, when the heart rate is high, but the 

accelerator shows that you are moving slowly and the EDA is high, it is a serious sign that you are under 

a state of psychological stress (so sitting still with your heart pounding and your palms souring could 

be an anxiety attack). On the other hand, when the heart rate is high and accelerator is high and EDA 

moderate then it is probable to be physical exercise and not stress. The traditional threshold algorithms 

will have problems with this difference, yet a trained model will be able to identify these cases. Indeed, 

it is common in previous literature to discount physically active periods when estimating human-

HR/EDA-related stress using decision rules; learned by GNN essentially to adapt to the rules. This form 

of context sensitive fusion is precisely what GNNs have been hypothesized to give in the field of 

wearable intelligence, and this is successfully proven by our results. 

Table 4. Experimental patterns in detecting high and low-stress days with varying sensor inputs. 

Multimodal graphs (also termed as graph model) are superior compared to single sensor models. 

(According to the total number of days 480 (high stress 90) 160 (low stress) rest moderate/unused) 

Model (input features) Accuracy (%) F1 (stress) 

GNN (HR + EDA + ACC) 85% 0.86 

HR only (LSTM) 75% 0.76 

EDA only (LSTM) 78% 0.80 

Early fusion ML (HR + EDA) 80% 0.82 
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Figure 6: This figure shows the comparative distributions of weights of the edge suggesting dynamic 

changes of connectivity. Statistically, the HR-EDA advantage is increased during stress, which is a 

phenomenon of sympathetic dominance, whereas the HR-ACC is alleviated, which proves the 

contextual differentiation of models. It applies to physiological meaning, linking machine inference to 

interpretable graph intelligence, because it is clinically presented as a visualization of adaptive 

weighting central to explainable graph intelligence. 

The GNN stress detection model also gave the weight of edge attention in the model, which aided in 

further interpretation. We examined learned weights (of the first GCN layer) of the connection of the 

HR node to the ACC node, and HR node to EDA node. The model showed a tendency of giving more 

importance to the HR-EDA relationship and a little less to HR-ACC on days that were termed as high 

stress. Essentially the model had discovered that a relationship between heart rate and electrodermal 

activation is the manifestation of stress (with a heavy weight given to the former when predicting stress), 

but the relationship between the heart and movement is not informative (instead it is anti-informative). 

The re-weighting process is comparable to an attention that prioritizes the appropriate modalities of the 

situation - this is a high-level concept that has been proposed in the survey papers to be followed by 

wearable AI. Here we learned it through GNN: effectively, the edge weights are changeable in response 

to the node states. During low-stress days, in contrast, the model paid little attention to the edges of HR-

EDA (because presumably both HR and EDA could be on a baseline and the lack of arousal is 

informative), and more emphasis could be put on the context or ACC edges (reflecting such patterns as 

it is evening, and user is calm, which is likely low stress). This capability to control relationships 

between sensors that are important given various situations is a significant strength of graph-based 

learning in multimodal data. 

4. Discussion 

Our results can be compared to previous research in the area and it is informative. Our prediction 

resilience (AUROC = 0.80) is much higher compared to the 0.60 AUC of Hirten et al. (2023) when 

predicting resilience with gradient boosting on the wearable data. One possible cause of the 

improvement could include the fact that our models incorporated more sensor modalities (their work 

relied mostly on heart rate and activity on Apple Watch without EDA) and our model was more 

expressive and thus represented interactions. It might also be that our sample was smaller (120 vs 329) 

but had a wider range of resilience or cleaner signals because, unlike in the study they performed, our 

data collection was controlled and therefore theirs was gathered in the wild in the COVID-19 pandemic 

and could lead to confounds. In any case, our ability to increase predictive power of resilience is a 

significant milestone, which implies that resilience - something we thought was too abstract to measure 

with the help of the human body - leaves a trace on the output of the body in case we employ more 

sophisticated tools to perceive it. 

To detect stresses, our binary high/low stress detection of about 85 percent compares to the findings of 

controlled stress studies using wearable. As an example, a widely used benchmark dataset WESAD 

(Wearable Stress and Affect Detection) claimed up to 85-93 percent accuracy in differentiating stress 

and non-stress based on chest sensors and slightly lower based on wrist-only sensors. The monitoring 

of our participants (some of them were equipped with both chest (ECG) and wrist (EDA, ACC) data) 

probably assisted in going as far as to the upper side of the performance. A reported accuracy in real-
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life situations can be as low as 60-80% when noisy and ground truth are absent; in our case we could 

be described as optimistic because we were rough in labeling days and also we were not including in 

our scheme namely the neutral days. In a way, it shows a limit of what can be done with multimodal 

wearable and surface integration. A single systematic review (Kargarandehkordi et al., 2025) pointed to 

the fact that numerous AI models of wearable mental health monitoring may not have any 

generalizability and frequently tend to be effective only under the conditions according to which they 

were trained. We have cross-validated on the level of a person, thus our model is corrupted by learning 

general patterns and not specific idiosyncrasies of a person. With that said, the generalizability to 

completely novel populations (the diversifying of demographics or clinical populations) still has to be 

tested - and this is a frequent issue in the literature. 

Interpretation and Theoretical Implications 

There are a number of implications of our findings to the biopsychosocial understanding of the resilience 

and stress. To begin with, the close position of the cardiac autonomic measures (HRV) in the model 

corresponds to the neurovisceral theory of integration, according to which the adaptable autonomic 

functionality is the basis of effective regulation of emotions and resilience. The HRV features used by 

the GNN, as well as their interconnectivity with other signals (such as activity), explains why the notion 

of a resilient person as having physiological flexibility - his or her organism is able to quickly adapt to 

shifting requirements (as shown in HRV) and respond accordingly to the activity or rest. An example of 

this is that a resilient individual may experience an augmentation in heart rate during exercises (suitable) 

and not long-term heart rate increment following minor stressor (swift recuperation). By examining 

such correlations as HR-ACC and HR-EDA, our model appears to reflect elements of such flexibility. 

It is supported by clinical findings that stress management and resilience are not only frequently 

enhanced by interventions that enhance HRV (e.g. biofeedback, aerobic exercise) but also be correlated 

with them. 

Secondly, the combination of behavioral information (steps, sleep) and physiological information and 

predicting resilience indicates that resilience is enshrined in daily routines and behaviors. Although the 

steps per day were added even after adjusting HRV and HR, it means that active lifestyle may be a 

contributor of resilience itself or a minimum a correlate of resilience. It opens a curious prospect: can 

making oneself more active and improving sleep hygiene help to increase the score on resiliency? At 

the longitudinal level, that might be analyzed. However, what our predictive model demonstrates, is that 

those factors together with physiological markers give one a similar picture of the adaptive capacity of 

a person. 

Methodologically, the performance of GNN shows that data structure is a significant issue in future 

wearable computing studies. Rather than summarizing all sensor data to a single long vector (and 

therefore losing the distinctions and relationships), putting a graph structure over it that reflects the 

human psychophysiological network performs more effectively in learning. In essence, we provided the 

model with a blueprint of the relationship between heart, sweat, motion, temperature are related in some 

manner, which was refined by the model. Such an approach can be generalized: e.g., such knowledge-

driven edges as known physiological pathways, causal relationships (heart rate increases cause changes 

in thermoregulatory, etc.) might be added to the graph. Our present graph took simple correlations as 

weights between the edges of the graph, which are directional and causal. It is possible that future 

models may have directed graphs or dynamic graphs in which the weights of the edges change with 

time or other external information (such as time of a day). 

The other implication is associated with explainability. Clinicians and psychologists may question the 

model, which believes that a person is resilient or resilient not. It is difficult to answer with a black-box 

deep network which takes all features. Yet our graph model is the probed one: we may trace out which 

(node or edge) characteristics had the most power. In computing integrated gradients or attention scores 

one, we could compute these scores on the graph of a given individual. In initial studies, we found that 

to a significant proportion of people possessing low-resilience the model was conditioned by trend of 

high resting heart rate and low exercise - a trend that is arguably consonant with stress related to chronic 
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stress or physical ill fitness. High-resilience people tend to be hooked on the high HRV index and usual 

habits of activity. These are explainable aspects that are rational to health practitioners. In addition, 

plotting the graph and visualizing the features, features, and relationships between nodes could 

potentially make a kind of dashboard with resilience (e.g., indicating that a specific person has high 

heart-activity correlation (healthy) and a high sympathetic in response (large EDA even at rest) which 

may then be used as a goal of interventions of the sort relaxation training.\ 

Limitations of our study should be mentioned. Its sample size (120) is moderate; it is enough to prove 

that improvements are taken, but bigger cohorts will be more powerful and enable their examination of 

subgroups. The measure of resilience was cross-sectional (baseline); we considered it to stay the same 

during the month, whereas it might not be the case with everyone (some individuals may have an event 

that will alter both their resilience and attitude or at least the latter). Also, we have the operational 

definition of high vs. low resilience through split in medians which is more or less arbitrary and might 

do not represent a clinically meaningful difference. Even an individual slightly higher than the median 

may not be really so resilient in absolute terms. Future analysis might apply set cut-offs or take resilience 

as a continuous measure as our regression head had the capacity to do, but categorising was our primary 

consideration, so that it could be interpreted. 

In inflating stress labels, daily stress which has been self-reported is a crude ground truth. Subjective 

ratings of stress in people can be subjective and could fail to indicate the short term spikes. The 

evaluation of stress detection models would be strengthened with more objective or momentary 

labelling (such as samples of cortisol or the time of events when a stressor is present). Nonetheless, it 

is hard to get objective measures of stress at scale, and thus it is a common practice to use self-reports 

in field studies (as most of the studies reviewed in indicated). The results of our model in terms of stress 

identification are therefore to be understood in terms of subjective names - it is sensing the perceived 

high stress. Interestingly, it would be argued that it is precisely the perception of the stress that is in the 

interest of the interventions (because when a person does not perceive stress, he or she may not 

necessarily need an intervention even though his or her physiological side responded accordingly). 

Theoretically, the possible overfitting or spurious correlation is a constraint of the methodology. Our 

cross-validation and experimenting on participants not seen helped to address this, but there is still a 

high possibility that the model will be biased to learn the correlations between our sample or our devices. 

An example is where every high resilience folk would just use the device more regularly which the 

model could then discern as data density being used. We performed a check-up and felt no apparent 

confounds (there is approximately the same amount of wear time in groups, etc.). The other problem is 

that of feature multicollinearity - there are some features that overlap (e.g. resting HR is inversely 

correlated with HRV). This is managed by our graph approach where it is possible to connect such nodes 

and even flow the information but a very collinear feature set may sometimes eliminate unique 

contribution to each. This could be one of the reasons why logistic regression failed (it is not good with 

collinearity) where GNN can place weights evenly among correlated features. 

 Our experiment gave support that multimodal wearable sensor data do hold cues reflecting both 

psychological resilience (a characteristic) and momentary psychological stress (a condition), and that 

graph neural networks are a successful approach in order to pull out such cues. The GNN was more 

successful in comparison with traditional models because it could use the structure on the data - the 

association between various measures of physiology. It has essentially learnt a customized physiological 

network of each person and some of the network properties were associated with great resilience (e.g., 

a high level of heart-activity correlation, a high level of total variability) and others with vulnerability. 

The current results can be combined with the existing psychological theory as they have given a 

measurable and objective glimpse into the psychophysiological portrait of resilience. They also 

demonstrate the direction to move forward with continuing mental health monitoring: instead of putting 

emphasis on a particular biomarker such as HRV, it is more beneficial to integrate several streams using 

smart algorithms to gain a more informative view. 

Going at a larger viewpoint, the work is where the areas of affective computing, wearable technology, 

and applied graph machine learning meet. It helps to make the shift of basic step counters and heart rate 
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monitors toward more situational and smart wearables with the ability to infer intricate conditions, such 

as emotional distress. We believe that our exemplification of a demonstration of a practical application 

and its positive result will encourage other studies that can ameliorate graph-based models and can be 

used to recognize other mental health constructs (e.g., clinical depression detection, treatment response). 

It is our results that suggest the reason why the human body needs to be conceptualized as a system 

where mental health can be deduced through the pattern of the system, and not an individual signal 

alone. Holistic, systems, wearable-friendly view of mental health, unlocked by GNNs, may be the key 

to more trustworthy and prompt diagnoses of mental health and finally, preventative psychiatry and 

individualized well-being eventualities. 

Our GNN approach yielded positive results, which open up a range of opportunities to conduct future 

research and develop our approach. The next step that can be taken immediately is the inclusion of other 

modalities of data in the graph. To illustrate this point, it is possible to say that smartphones can offer 

social or contextual information (patterns of communications, geolocation, screen time) that ships can 

turn into other nodes that connect to physiological ones. Psychological resilience may also be a 

perspective of social support and thinking variables that we do not directly measure; it may be that we 

should add a node that represents self-reported optimism or social support (because optimism was 

measured by Hirten et al. and found useful in predictions of composite). Our present graph was a 

homogeneous one (the nodes were all features personal to the person). More sophisticated graphs may 

consist of many layers, such as a temporal graph, with each day or each hour a node, linked in a time 

succession, and within each such node the modalities linked - a dynamic graph. Variants of graph neural 

networks, such as temporal GNNs or graph LSTMs could then forthright model variations over time. It 

may make trends easier to determine, such as the fact the physiological network of a person is stabilizing 

or becoming unstable over time, and this may indicate a future case of burnout or depression. 

The other direction that it can take is to push the model to intervention instead of prediction. In case we 

are able to predict low or high resilience or high stress, the question arises, now what? The loop may be 

closed in the future by the use of just-in-time interventions (JITAI) provided by the future system upon 

the recognition of stress or even coaching to enhance resilience. The interpretability of our model might 

inform interventions - e.g. when our model suggests that there has been low resilience the primary 

reasons might be low activity and poor HRV and so the suggestion can be designed as structured exercise 

or training on HRV biofeedback to attempt to change these parameters (and by implication resilience). 

Through time with our framework, it would be able to follow whether the physiological graph of the 

person would shift (edges and nodes changing towards a healthier direction) as the person becomes 

more resilient. 

Technologically, one can also exploit the GNN to be streamlined to be used on-device or in real-time. 

At the moment, opportunities to perform graph computations are too severe on a smartwatch, though 

with developments in edge AI and optimization of the model (ours is rather small: 2 layers, 16-8 units), 

it may become possible to execute graph computations on a smartphone. Such technologies as federated 

learning may enable training on data of numerous users, without centralizing sensitive health 

information, which is a solution to privacy concerns. Since privacy is of the first importance of mental 

health data, one of the possible solutions of scaling this in practice may be to use federated GNN training 

where the graphs of each user are trained locally, and it is only model weights that are exchanged. 

This is finally not exhaustive since we would recommend the exploration of generalization to clinical 

outcomes. Resilience is a loose concept, but it is interesting to understand whether a model as ours can 

explain, say, the development of the depressive symptoms due to stress or the development of the 

anxiety flare-ups. This might necessitate longitudinal outcome data (e.g. follow individuals 6 months to 

determine whether low resilience as predicted by wearable GNN is associated with mental health 

deterioration in the future). In case confirmed, resilience scores derived using wearables may be utilized 

as a screening instrument to determine people that are ready to receive preventive treatment. 
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5. Conclusion 

In the article, we have introduced a new approach of utilizing graph neural networks to predict 

psychosilience and mental conditions based on multimodal wearable sensors. The most crucial are that 

our GNN model is able to learn to combine signals from a heart-based, skin-based, and motion-based 

to estimate how well an individual is able to cope with stress and determine when he/she is under high 

stress levels, with much better accuracy compared to traditional ones. The GNN had a somewhat large 

AUROC of the classification of high vs low resiliency - an acceptable advancement above earlier 

wearable-based resilience forecasts (which were near chance level at 0.55-0.60). It has also shown a 

precision rate of around 85% on the high stress days, which indicated the effectiveness of context-

sensitive data integration. The modeling of the physiological data of each individual as a graph allows 

us to obtain meaningful interactions between modalities (e.g., the interaction of heart rate and EDA 

during a stress situation) which are interesting predictors of the mental state. 

Our results support the fact that psychological resilience cannot be an abstract notion that is not 

combined with the body, but is also expressed in the bio-indicators and routine patterns. The profile of 

more autonomic flexibility (greater HRV, lower resting HR), active lifestyles, and maintained stress 

reaction were observed to correlate with high resilience whereas the indicators of physiological strain 

or dysregulation linked to lower resilience. These relations, identified and prioritized by the GNN, 

indicate that wearable devices when supported by the further development of AI will be able to go 

beyond the ability to simply monitor fitness characteristics and potentially detect more complex 

psychological aspects. This preconditions the sustained mental health evaluation: e.g., employers or 

clinicians may be providing resilience checks to the workers in the stressful profession, giving a 

feedback or interventions upon a drop in physiological resilience numbers. Likewise, real-time stress 

detection can allow implementing just-in-time responses (including mindfulness reminders or breathing 

sessions, provided through the smartwatch in case of high stress levels sensed). The graph-based model 

can easily add new data; the wearable in the future could contain more biosensors (hormones, 

neurotransmitters, etc.) and even environmental or social sensors, which can in turn be incorporated 

into a more sophisticated graphical representation of the wellbeing of a person. 

The current study underlines a research innovation, which is of practical value. To affective computing 

and digital health researchers, it gives them an example of how to use graph neural networks to process 

multimodal and multi-timescale data typical of wearable. Also, it highlights the importance of 

synthesizing the data-driven models with some physiological knowledge: when creating the graph of 

nodes and edges, whose value can be interpreted (heart-EDA correlation, etc.), we will be sure that the 

results of the model can be interpreted and compared with the medical information. Since practitioners, 

especially in mental health and preventive medicine, may purely be interested in resilience (which can 

be assessed only through questionnaires), the findings indicate that this aspect may be predicted in a 

continuous manner to provide proactive support. The method might be used in addition to the more 

traditional assessment systems, providing an objective view (e.g. by validating assessment of stress by 

the self-reported data of a patient with a physiological test, or the detection of latent stress that a patient 

would otherwise not be aware of on a personal basis). 

We are under the opinion that there are a number of ways to develop this work. A key area of direction 

is the validation and optimization of the model across a variety of populations, encompassing both 

clinical categories (ex: patients with anxiety disorders/PTSD who may show a varying physiology 

relative to resilience), as well as among different demographics (e.g. age, gender, etc. might influence 

baseline physiology). The other line is temporal generalization - is it possible to use it to forecast 

variations in the mental health of a particular person over time? As an illustration, in case the resilience 

score of a particular individual is lowered because of the chronic stress, will the wearable graph be able 

to pick up the trend? Longitudinal research would not only assist in answering that, but perhaps it would 

also be possible to predict mental health pathways. In more detail, it may be possible to further enhance 

the performance and understanding by using more sophisticated types of GNN such as Graph Attention 

Networks (which can learn to assign edge weights to a larger degree) or dynamic graphs (to update the 

state). Also, transfer learning may be useful: once a model has been trained on a particular mental health 
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issue, it may be re-purposed on a different one, provided that the physiological signatures between the 

two are similar. Furthermore, it will be essential to integrate explainable AI methods to be adopted; we 

will create clear (e.g., Your stress prediction has been high today because of high heart rate, and this 

was unrelated to sports) explanations based on the computations of the graph model that may give users 

the power to control their mental health. 

This research paper offers insight into the fact that the combination of multimodal wearable sensors 

data through the use of graph neural networks is a good alternative in order to measure psychological 

resilience and track mental health. It combines the data science rigor with the qualitative insights into 

the human adaptation and stress. With the constant increase in the development of the wearable 

technology in terms of precision and spread, these AI models can make raw data turn into meaningful 

indicators of the mental health. Our vision is that one day people will be able to check their metrics of 

mental fitness just like they do with physical fitness nowadays, the machines will be silently taking an 

analysis of their physiological networks to determine how they are doing and when they may require 

assistance. We are making the first step to such vision with the help of our research and proving the fact 

that the signals of mind, written in the rhythms of body, can be deciphered in the language of graphs 

and networks. Finally, this area of work brings about better, proactive, and preventive mental health 

care - transforming data continuously to care continuously. 
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