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Abstract 

The enhancement of Artificial Intelligence (AI) technologies in educational institutions has both presented 

opportunities and challenges to the teaching professionals on a scale never been witnessed before. In spite of 

the rapid rate of development of AI-driven educational technologies, their acceptance among teachers is not 

evenly spread, and there are complicated factors behind it that define their decision-making patterns. This 

paper fills in this critical gap on the necessity to comprehend why teachers accept or reject the use of AI by 

considering the interaction of trust machinery with the perceived impact and determinants of adoption in the 

teaching environment. We also conducted a survey of high education teachers working in various institutional 

contexts, with the help of complex mixed-methodology approaches to study the connections between the 

variables in the paradigm of technology acceptance, organizational support systems, and AI adoption 

behaviors. The analysis helps to discover that teacher confidence in AI-based educational technology acts as 

the main mediator between perceived usefulness and real adoption, and psychological safety and institutional 

support are high levels of moderation. Findings have indicated that 5 of the six core constructs, meaning 

perceived usefulness, ease of use, trust in AI systems, institutional infrastructure, and professional self-

efficacy, explain 68.3 percent of adoption variance. More so, the research has discovered some of the key 

obstacles such as complex technology, ethical issues covered with data privacy and the fear of being displaced 

professionally. These results add to the theoretical improvement of the Technology Acceptance Model used 

in the educational settings as well as offering practical implications to the policymakers and developers of 

educational technologies aimed at achieving successful incorporation of AI meaningfully into the teaching 

processes. 

Keywords: Artificial intelligence, Education, Technology acceptance, Teacher, Professional development, 

Structural equation modeling.  

 

1. Introduction 

Artificial intelligence integration in educational systems is one of the most radical changes in the 

modern education industry [1]. With the challenges of digital transformation being experienced in 

learning institutions all around the globe, AI-based solutions have begun to be viewed as potentially 

groundbreaking tools with the potential to personalize the learning process, automate certain 

administrative functions, and present students with data-driven feedbacks concerning their 

performances [1-3]. Recent estimates suggest that the current market, which is already 7.57 billion USD 

in the field of AI in education in 2025, is expected to grow to 112.30 billion USD by 2034, which implies 

the presence of an unprecedented compound annual growth rate of more than 36 percent. This 

phenomenal trend of growth highlights the heavy investment, as well as the escalating expectations of 

AI technologies, in the realm of education. 
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With this flow of technology and a financial outlay this large, the facts on the ground have demonstrated 

a more complicated fact of real adoption behaviors amongst teaching professionals [2,4]. According to 

the contemporary research, it is estimated that AI devices are implemented in instructional planning or 

classroom instruction by about 25-30 percent of teachers in the 2023-2024 academic year, and a large 

range of disparities is observed across the subject domains, grade levels, and socioeconomic 

backgrounds. Though 83 percent of K-12 teachers indicate that they use generative AI products either 

personally or professionally, only a small percentage of them apply the technologies as a means of 

systematic utilization in their learning systems. This disparity between supply and demand poses a dire 

predicament to the developers of educational technologies, institutional administrators, and 

policymakers who aim at achieving the advantages of AI to their fullest potential in the world of teaching 

and learning [5-8]. 

The hesitation/selectivity of educators using AI technologies cannot be explained by single factors; it is 

formed by a complex of the combination of psychological [6,9], institutional [10], technological [10-

12], and pedagogical ones [7,13-16]. The attitudes of teachers towards using AI are influenced by a 

variety of dimensions such as faith in artificial decision-making, the attitudes to the data safety and 

security, beliefs on the impossibility of replacing human teachings, and fears of losing employment 

[2,17-19]. Moreover, institutional obstacles including lack of professional development opportunities, 

structure of institutional support [3,20-23], lack of adequate technological infrastructure [9,24-26], and 

time-related factors in combination with individual hesitations and reluctances exert systemic pressure 

that makes the broad application of AI challenging. 

Although the current literature has a great number of studies analyzing the adoption of AI in education, 

there are still some gaps that could be considered vital in the current literature. First, there is not much 

information concerning the adoption rates and isolated aspects which impact teacher choices, and there 

is still a lack in understanding complicated associations of psychological, institutional, and 

technological variables, which together result in adoption behaviors. Second, the theoreticalization and 

operationalization of trust in educational technologies that are run using AI is not well developed. Third, 

available studies are biased in terms of analysis of teacher attitudes and intentions without actual 

implementation actions and continued usage habits. Fourth, the influence of institutional support 

systems and organizational cultures in enabling or inhibiting AI adoption is under-theorized and also 

not empirically looked into. Lastly, the literature is limited on how the different AI tools categories can 

vary in their effects on the decision to adopt by teachers. 

To fill the mentioned gaps, the results of this research attempt to meet the following objectives: 

formulating and empirically testing a theoretical model explaining the adoption process of AI, 

conceptualizing trust as a multidimensional measure, determining and measuring barriers to adoption, 

testing interactions between institutions and the existing support, and analyzing variations in adoption 

patterns depending on the educational setting. 

2. Methodology 

2.1 Research Design 

The research study utilizes a sequential explanatory design which is based on pragmatist epistemology 

and is mixed. The philosophy of the research acknowledges the fact that the complexity of 

understanding a phenomenon like the adoption of AI by teachers needs the including of various 

methodological aspects. The sample population included teachers (K-12 and higher education) that will 

be surveyed. 

2.2 Statistical Analysis Procedures 

Data analysis employed multiple advanced statistical techniques. Structural equation modeling tested 

hypothesized relationships among latent constructs. The theoretical model can be represented as: 
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𝑇𝑟𝑢𝑠𝑡 =  𝛽1(𝑃𝑈) + 𝛽2(𝑃𝐸𝑂𝑈) + 𝛽3(𝐼𝑆) + 𝛽4(𝑆𝐸) +  𝜀1 (1) 

 

𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 =  𝛾1(𝑇𝑟𝑢𝑠𝑡) + 𝛾2(𝑃𝑈) + 𝛾3(𝑃𝐸𝑂𝑈) + 𝛾4(𝐼𝑆) + 𝛾5(𝑆𝐸) + 𝜀2 (2) 

where PU = perceived usefulness, PEOU = perceived ease of use, IS = institutional support, SE = self-

efficacy. The indirect effect of perceived usefulness on adoption through trust was calculated as: 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝐸𝑓𝑓𝑒𝑐𝑡 =  𝛽1 ×  𝛾1 (3) 

Hierarchical multiple regression examined predictors while controlling for demographic variables. 

Multilevel modeling accounted for nesting of teachers within institutions using the specification: 

𝐿𝑒𝑣𝑒𝑙 1: 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛ᵢⱼ =  𝛽0ⱼ +  𝛽1ⱼ(𝑇𝑟𝑢𝑠𝑡ᵢⱼ) +  𝜀ᵢⱼ (4) 

𝐿𝑒𝑣𝑒𝑙 2: 𝛽0ⱼ =  𝛾00 + 𝛾01(𝐼𝑆𝐶𝑙𝑖𝑚𝑎𝑡𝑒ⱼ) + 𝑢0ⱼ (5) 

3. Results and Discussion 

3.1 Descriptive Statistics 

Overall, 31.2% of surveyed teachers reported regular AI use. Table 1 presents descriptive statistics 

showing perceived usefulness (M=5.12, SD=1.18) as the highest scored variable, while institutional 

support scored lowest (M=3.78, SD=1.42). 

Table 1: Descriptive Statistics and Correlations 

Variable M SD 1 2 3 4 5 6 

1. Perceived 

Usefulness 

5.12 1.18 1.00      

2. Perceived 

Ease of Use 

4.67 1.31 0.58*** 1.00     

3. Trust in AI 4.29 1.24 0.64*** 0.52*** 1.00    

4. Institutional 

Support 

3.78 1.42 0.47*** 0.41*** 0.53*** 1.00   

5. Self-

Efficacy 

4.58 1.36 0.51*** 0.69*** 0.49*** 0.44*** 1.00  

6. AI 

Adoption 

4.21 1.67 0.72*** 0.61*** 0.76*** 0.58*** 0.63*** 1.00 

*** p < .001, ** p < .01, * p < .05 

 

Key Findings from Correlation Matrix shown in Fig. 1: 

• Strongest correlation: Trust ↔ AI_Adoption (r = 0.76, p < .001) 

• Second strongest: Perceived_Usefulness ↔ AI_Adoption (r = 0.72, p < .001) 

• Trust mediates other variables: PU→Trust (r = 0.64), PEOU→Trust (r = 0.52) 

• Institutional_Support correlates moderately with all variables (r = 0.41-0.58) 

• Self_Efficacy shows strong link to PEOU (r = 0.69), suggesting usability matters 

 

3.2 Structural Equation Modeling Results 

The structural model demonstrated excellent fit (CFI=0.94, TLI=0.93, RMSEA=0.047). Trust emerged 

as the strongest predictor of adoption (β=0.428, p<.001). 
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Fig 1: correlation heatmap with hierarchical clustering 

Table 2: Structural Path Coefficients 

Hypothesized Path β SE p-value 95% CI 

PU → Trust 0.387 0.052 <.001 (0.285, 0.489) 

PEOU → Trust 0.218 0.048 <.001 (0.124, 0.312) 

IS → Trust 0.264 0.045 <.001 (0.176, 0.352) 

SE → Trust 0.156 0.042 <.001 (0.074, 0.238) 

Trust → Adoption 0.428 0.058 <.001 (0.314, 0.542) 

PU → Adoption 0.315 0.054 <.001 (0.209, 0.421) 

PEOU → Adoption 0.142 0.047 .003 (0.050, 0.234) 

IS → Adoption 0.187 0.043 <.001 (0.103, 0.271) 

*** p < .001, ** p < .01, * p < .05 

 

Table 3: Mediation Analysis - Total, Direct, and Indirect Effects 

Predictor Total Effect Direct Effect Indirect (via Trust) % Mediated 

Perceived Usefulness 0.481*** 0.315*** 0.166*** 34.5% 

Perceived Ease of Use 0.235*** 0.142** 0.093*** 39.6% 

Institutional Support 0.300*** 0.187*** 0.113*** 37.7% 

Self-Efficacy 0.273*** 0.206*** 0.067** 24.5% 

*** p < .001, ** p < .01, * p < .05 
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Fig 2: distribution plots with statistical overlays 

Distribution Characteristics shown in Fig. 2: 

• Perceived_Usefulness: Highest mean (5.12), positive skew → broad recognition of AI value 

• Institutional_Support: Lowest mean (3.78), highest SD (1.42) → inadequate & variable 

• Trust_in_AI: Moderate mean (4.29) → ambivalent attitudes, split opinions 

• AI_Adoption: Bimodal tendency → distinct non-adopter and adopter groups 

• Self_Efficacy: Right-skewed → many teachers feel capable, but variance exists 

• All distributions approximate normality (justified for parametric tests) 

3.3 Hierarchical Regression Results 

Table 4: Hierarchical Regression Predicting AI Adoption 

Predictor Model 1 Model 2 Model 3 Model 4 

Demographics     

  Gender (Female) 0.11* 0.08 0.06 0.05 

  Experience 0.15** 0.09 0.07 0.06 

  STEM Subject 0.18*** 0.12* 0.09 0.08 

  School Poverty -0.21*** -0.14** -0.11* -0.09 

TAM Variables     

  Perceived Usefulness  0.48*** 0.31*** 0.28*** 

  Perceived Ease of Use  0.27*** 0.16** 0.14* 

Trust in AI   0.42*** 0.35*** 

Contextual     

  Institutional Support    0.18*** 

  Self-Efficacy    0.21*** 

R² 0.124 0.516 0.638 0.683 

ΔR² — 0.392 0.122 0.045 

*** p < .001, ** p < .01, * p < .05 
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Fig 3: scatter plots with regression lines - key relationships 

Regression Analysis Results shown in Fig. 3: 

• Trust→Adoption: Strongest predictor (r=0.76, R²=0.58) - 58% variance explained 

• PU→Trust: Mediation pathway (r=0.64, R²=0.41) - utility builds trust 

• PEOU→Adoption: Moderate effect (r=0.61, R²=0.37) - usability matters but less critical 

• IS→Adoption: Contextual influence (r=0.58, R²=0.34) - organizational support essential 

• All relationships significant (p < .001) with tight confidence intervals 

• Linear assumptions validated; minimal heteroscedasticity observed 

 

Table 5: Moderation Effects on AI Adoption 

Interaction Term β SE p-value ΔR² 

Trust × Institutional 

Support 

0.14 0.038 <.001 0.019 

Trust × PD Quality 0.12 0.041 .004 0.015 

PU × Institutional 

Support 

0.09 0.042 .033 0.008 

SE × Institutional 

Support 

0.11 0.039 .005 0.012 

PEOU × PD Quality 0.16 0.044 <.001 0.025 

*** p < .001, ** p < .01, * p < .05 
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3.4 Discussion 

The data have strong support to the extended Technology Acceptance Model. The structural model was 

able to explain 68.3% of AI adoption and trust is the strongest direct predictor (b=0.428). Mediation 

analyses indicated that a third of antecedent effects mediated by trust were between 24.5 to 39.6. 

Institutional support was proved to have critical effects with direct effects, moderation effect and 

between-institution variance. School poverty has continued to have a negative impact that has created 

equity issues, which implies there are structural barriers that cannot be overcome by the individual 

factors. 

4. Conclusion 

This research created a sense of trust as the most relevant psychological process between the adoption 

of AI by teachers. Based on 5 main constructs, the long version of the TAM model predicted the adoption 

variance of 68.3%. The main results are as follows: (1) Trust mediates between technology perceptions 

and adoption; (2) Institutional support has multiple pathways: (3) Significant moderation effects exhibit 

contextual amplification; (4) Socioeconomic differences exist and it raises equity issues. To 

practitioners, the focus of findings is on multilevel coordinated intervention of technology design and 

professional development, as well as the institutional infrastructure. The longevity of designs should be 

utilized in the future studies, objective behavior measures should also be applied, and cross-cultural 

differences in adoption patterns should be considered. The implementation of AI in education can be an 

opportunity and a challenge. To see the opportunities of AI, it is important to focus on trust, attitudes, 

and institutional backgrounds that determine the decisions of teachers. Effective integration requires 

technology to be seen as an addition to knowledge of humans and not a substitute with teachers being 

the key to education excellence.  
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