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Abstract 

Identification of suitable location for construction of dam/reservoir is important for the sustainable 

development and flood control. This paper introduces a novel application between Artificial Intelligence (AI) 

and multi-criteria decision making (MCDM) for the enhancement of dam site suitability evaluation. In this 

research, Graph Neural Networks (GNNs) were introduced to automatically discriminate the MIF weights 

and substituted the weight schemes used in previous MCDM methods. A total of 12 climatic, geophysical, 

and accessibility indices working under a Geographic Information System (GIS) were considered. The GNN-

weights were used in weighted overlay analysis to create a dam suitability map, and the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) was applied for ranking possible dam locations. The 

results show that the GNN-based weights can significantly improve model accuracy, with the AUC value 

increasing from 0.806 to 0.826 after incorporating them into consideration. The top-ranked site was the same 

as previous reports, indicating that the method we used is robust. This AI-enhanced framework has greatly 

advanced the objectivity and predictability of dam site selection strategies, thereby enhancing the moderator's 

ability to make informed decisions when choosing sites for sustainable water infrastructures. 

Keywords: Artificial intelligence, Graph neural networks, GNN, Dam site selection, Multi-criteria decision making, 

Sensitivity analysis. 

 

1. Introduction  

Water resources are a major global concern due to the demands of climate change, population increase, 

and urbanization [1-2]. Droughts in dry seasons and floods during wet seasons put many areas at risk. 

Dams are key to addressing these challenges in terms of capturing water, controlling river discharge and 

providing an assured supply for irrigation, drinking and hydroelectric power [3]. Dams can contribute 

to water security and socio-economic development if planned properly as they manage floods and 

droughts, which means that renewable energy production may be possible. Nevertheless, obtaining these 

benefits is greatly conditioned by sustainable location of the dams, as the wrong localization can prove 

to have social, environmental and economic complications. Choosing the best location for a dam is not 

straightforward and depends on multiple criteria, ranging from technical and economic parameters to 

social, environmental, and even political factors [4-6]. The optimization, among these not necessarily 

compatible requirements is necessary in order to impact that the dam be safe, have an economic 

justification and contribute to a sustainable development socially accepted. 

The dam site selection is actually one of multi-criteria decision-making (MCDM) problems because of 

several number of factors and stakeholders associated [7]. Conventional methods have used expertise-

based MCDM techniques integrated with geographic information system (GIS) applications to assess 

the favorableness of alternative sites [8-13]. In MCDM, decision makers establish a set of criteria 

(hydrology, geology, ecology, cost and community impact) along with associated weights based on their 
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relative importance and rate the performance of each alternative relative to these criteria. Many MCDM 

methods like AHP (Analytic Hierarchy Process), WLC (Weighted Linear Combination), TOPSIS 

(Technique of Order Preference Similarity to Ideal Solution) and different fuzzy logic approaches are 

commonly employed in dam site selection studies. For example, AHP was commonly used to derive 

weights by conducting pairwise comparisons of criteria and incorporating expert knowledge in dam 

suitability mapping [14-18]. A large number of case studies all over the world, such as locating small 

dam site in arid region and reservoir planning have used AHP base GIS efficiently to generate dam 

suitability maps ranging from low to very high suitability. One benefit of such MCDM methods is they 

offer a structured, transparent process for combining multiple criteria to assist decision makers in 

selecting areas that fulfill several different needs [19-21]. Although traditional MCDM methods are 

widespread and have been shown in many studies to be very useful, they also possess some significant 

drawbacks. They usually involve a great deal of expert judgment, and therefore they can be subjective 

and biased. Whilst in fact many of the environmental and geotechnical parameters (say slope, elevation) 

are interdependent, methods such as AHP assume independence of criteria [14]. This can impact the 

ranking results themselves. What is more, classical GIS-MCDM usually oversimplifies complicated 

phenomena: such as for accessibility when may consider only a single distance-to-road metric to 

estimate how good a site connect to communities or ecosystems. 

More recently, sophisticated AI and machine-learning methods have been introduced to optimize the 

selection of sites [22-27]. There have been attempts to merge evolutionary algorithm techniques such 

as genetic algorithms (GA) and ant colony optimization (ACO) with GIS for optimising multi-criteria 

site selection. These methods can explore huge solution space to find out the best, or near-optimal site 

combination under different constraints. Fuzzy extensions of MCDM (such as fuzzy AHP, fuzzy 

TOPSIS) have been proposed for dealing with the uncertainty on criteria weighting and ranking in 

making more robust or ambiguity approaching decisions. For instance, group fuzzy-TOPSIS models 

have been applied to consider multiple experts' opinions in ranking dam site alternatives [19,28-29]. In 

this context, the availability of more data through a growing amount of geospatial information and new 

computational power has fostered an increasing number of data-driven approaches such as machine 

learning models for suitability prediction. These models operate not only on user-defined expert 

weights, but also learn patterns from past data if any is available of dam locations or suitability 

measures. Types of classification and ensemble learning methods such as Random Forests (RF) and 

Support Vector Machines (SVM) have been used to classify sites for suitability or unsuitability using a 

training set of environmental and physical attributes. Neural network models have been studied for 

better predictive mapping of site suitability [30]. For example, sophisticated neural network structures 

(i.e., including deep learning models) were applied for check dam site selection in a sub-tropical river 

basin and it can identify complex nonlinear relationships among hydro-geological factors. Compared to 

conventional weighted overlays, these AI methods often provide substantial improvement by exploiting 

large datasets (e.g., remote sensing layers and hydrological features) and complex feature interactions 

so that dam site evaluations can be performed with higher objectivity and more powerful predictability. 

Yet, many current machine learning models continue to consider each location as an independent sample 

with no consideration for how the suitability of one site might inform the suitability of another, a concern 

when dealing with connected networks in river systems. 

To model spatial interactions and networks in the site selection problem, Graph Neural Networks 

(GNNs) are emerging as a state of-the-art AI approach [31-33]. GNNs are meant to process data with 

graph structure or, abstractly, graphs as we could think of it: nodes for entities (e.g., places) and edges 

indicating relationships or flows between them [6,34-37]. Unlike classical neural networks, GNNs can 

learn representations that consider the relationships of sites, a characteristic critical to environmental 

planning and infrastructure planning. In the framework of dam site selection, for example, a GNN could 

similarly model A river basin to capture interactions between sites (e.g., by means of edges representing 

hydrological or environmental connections) as A network (graph). This network-aware modeling might 

help the AI learn how the suitability of one site is dependent on or affects other sites in the watershed, 

how building a dam at one location would affect flood control or water availability elsewhere. The 

combination of these graph-based interests with MCDM, would mark a substantial step forward for 

sustainable dam site location, not just in terms of satisfying multiple criteria at the selected site, but with 
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respect to considering whole system implications. Table 1 shows the literature on dam site selection 

techniques and their applications. 

Table 1. Summary of dam site selection techniques and their applications 

References Technique  Application (case and data) Validation /main 

outcome 

[38] GIS + AHP + ML overlay Dam suitability mapping (Sharjah, UAE) using 9 

layers (rainfall, slope, geology, lineaments, CN, 

etc.) 

Produced DSSM and 

ranked dam sites 

[39] GIS + MIF–TOPSIS Potential dam site screening with 12 

climatic/geophysical/accessibility factors 

ROC–AUC = 0.806; 

low-cost decision aid 

[40] Fuzzy logic + exploratory 

regression 

GIS-based reclassification (geology, LULC, 

slope, rainfall, soils) with fuzzy memberships 

Data-driven fuzzy 

weights; improved 

interpretability 

[41] FAHP → ANFIS (two-phase) Double assessment for sustainable siting (HWSP 

case); includes reservoir volume, sediment, cost 

Sequential 

FAHP→ANFIS refined 

choice (Zmkan-B) 

[42] GIS–MCDA (AHP/FAHP) Basin-scale suitability (Bagmati River, Nepal); 

9+ criteria 

FAHP slightly 

outperformed crisp 

AHP 

[43] AHP vs TOPSIS (comparative) GIS-based dam siting (geology, erosion, slope, 

groundwater, discharge, water quality) 

Reported consistency & 

rank differences 

[44] RF & SVM (supervised ML) Predict suitability from terrain/hydro factors; 

data-driven classifiers 

Demonstrated ML 

feasibility for dam 

siting 

[45] BRT/MARS/MDA/RF/SVM Check-dam siting optimization; 5-model 

comparison 

RF/SVM competitive; 

multi-model ensemble 

insight 

[46] Group MCDA for SHP 

planning 

Small hydropower site decision support with 

group preferences 

Structured group 

decisions for plant 

siting 

[47] FAHP + VIKOR Earth-dam alternative ranking (18 criteria) Integrated fuzzy 

weights + compromise 

ranking 

[48] Binary / nadir compromise 

programming 

Formal dam site selection problem (DSSP) 

under certainty & uncertainty 

Optimized 

multi-objective site 

choice 

[49] Deep learning + spatial 

analysis 

Detecting unknown dams from high-res RS to 

feed candidate extraction 

Broad-area detection 

pipeline 

[50] YOLOv5s-ViT-BiFPN Automatic dam extraction; RSDams dataset Precision ≈ 88.2% after 

transfer learning 

[51] RF + spatial constraints Candidate-region identification for large dams (5 

countries) 

Reduced search to 

< 1.06% of area 

[52] Geographic knowledge + DL Verify dam locations in open datasets (SE Asia) 

to build reliable inventories 

End-to-end verification 

framework 

[53] Hybrid RF + DL Large-area dam detection with geographic factor 

analysis (Sindh, Pakistan) 

Faster, scalable 

database enrichment 

[54] GIS–MCDA + ML Dam siting (Nigeria): integrated geospatial/ML 

map with stream proximity & rainfall effects 

Identified optimal sites 

KA1/KA2 

[55] RS–GIS pre-screen 

(flow/valley) 

Hydropower dam siting from flow accumulation 

& valley algorithms 

Workflow for initial site 

narrowing 
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The aim of this research is to develop a sustainable dam site selection framework using an artificial 

intelligence-based Graph Neural Network (GNN) integrated with multi-criteria decision-making 

(MCDM) techniques. There are a number of key contributions from this study to the field of knowledge. 

First, it applies a graph neural network to the dam site selection problem domain, thus linking modern 

deep learning with classical multi-criteria analysis for spatial decision support. Second, it is a deep 

analysis on the past methodologies (MCDM, fuzzy systems, evolutionary algorithms, machine learning) 

for sustainable dam planning which achieves an overview of literature for researchers as well as 

practicing engineers. Third, the proposed model offers in-depth insight into how to blend AI with 

sustainability constraints and provides a decision support indexed which is based on data but achieves 

good alignment for scheduling some values of an expert opinion versus computational speed, an 

important tradeoff when addressing sustainable infrastructure. The work is a pioneering one towards 

the next generation of intelligent decision systems for water resources engineering, which has 

significant implications in making dam construction more sustainable and successful around the globe. 

2. Methodology 

Study Area 

This study was carried out in the basin of the Ulhas River, Western Maharashtra, India (Fig. 1). This 

catchment area is about 4,390 km² in extent and lies across parts of Thane, Raigad and Pune districts 

[56]. The Ulhas River is the main river which flows from the eastern side of the city, beginning in 

Rajmachi and flowing eventually into the sea. The river is joined by the Kalu and the Bhatsa rivers in 

the basin, which increases its flow. The topography of the basin can be categorised into three main 

geomorphologic zones: a western coastal lowland plain, a central pediment zone and an eastern highland 

or escarpment area. These variables create a semi-circular catchment with dendritic drainage, and the 

latter can cause concentrated water to flow towards the lower part of the basin. The climate in the Ulhas 

basin is tropical monsoon. Annual precipitation is generally about 3,000 mm, most of this precipitates 

during the June–September monsoon [56-58]. Heavy rains during this time can cause significant runoff. 

The heaviest rainfall occurs along the eastern highlands, which are drained by a network of streams 

flowing to join downstream rivers. Average temperatures are about 15°C in winter and 35°C in summer, 

but the climate is moderate between the monsoons. The Deccan Traps basalt which covers most of the 

study area [56]. The basin is underlain geologically by Late Cretaceous Deccan Traps and hard volcanic 

surface rock that form the highest levels. Alluvial deposits and marine sediments lie on top of the basalt 

near the coast and along river valleys, leaving areas of less rocky soil. Soil types range from coarse 

alluvium in the coastal plains to shallow stony soils in the uplands. 

The Ulhas River basin is heavily populated, with human settlement and development. Portions of the 

basin fall under the Bombay Metropolitan Region (covers towns like Kalyan, Dombivli, Badlapur, Navi 

Mumbai) and are depended upon for water supply directly using Ulhas River along with its tributaries. 

Water demand has increased over recent decades due to rapid urbanisation, population growth and 

further changes in land uses in the basin. This region is subject to flooding during heavy monsoon rains, 

and (i) lack of adequate upstream storage or containment facilities, has caused downstream areas to 

experience major floods, such as the Mumbai floods in 2005. On the other hand, during drier months 

some areas in the basin suffer from water shortage for agriculture and human consumption. All these 

factors underline the need for sustainable dam site selection in the Ulhas basin. Reservoirs are designed 

to be strategically located, the goal is to capture extra monsoon runoff to prevent flooding and save 

water for drought periods, with minimal socio-environmental effects. Hence, this study from Ulhas 

basin is a case in point to illustrate an improved decision framework for dam site selection utilizing 

state-of-the-art AI and MCDM approaches. 
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Fig. 1 Location of the study area 

GIS–MIF–TOPSIS framework 

We utilized a GIS-based multi-criteria decision-making methodology that extends the traditional GIS–

MCDM–TOPSIS approach. In such a framework various thematic criteria are integrated through GIS 

to produce a dam site suitability index, which is in turn utilized for selecting dam sites. These candidates 

are refined by application of an MCDM technique and prioritized for final decision. The major steps of 

the GIS-based technique include (i) Acquisition of data and preprocessing in GIS for relevant criteria 

layers (ii) Weighting and aggregation of criteria to produce a suitability map using multi-influence factor 

analysis model; (iii) Application of Graph Neural Network model to obtain multidimensional influence 

factor weights. It replaces subjective or heuristic weighting of influence factors process;(v) Priority 

ranking top candidate using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS); 

(vi) Conduct sensitivity analysis to verify the robustness of influence factors and, lastly, validate results 

use Receiver Operating Characteristic-Area Under Curve analysis with existing dam’s information. All 

spatial analysis was performed in a GIS environment, and the process followed the standard workflow, 

with exception of inclusion of a GNN-based weighting technique. 

Data Acquisition and Criteria Preparation 

An integrated approach should be adopted for dam site suitability assessment taking into account 

environmental, hydrological and socio-economic aspects [59-63]. We used literature and guidelines to 

find out 12 factors that affect decision-making of the site for dam construction. These in the form of 

weather, geophysics and accessibility. The following criteria are used; 1) CN - Curve; 2) Slope; 3) 

Drainage density; 4) Geology; 5) Geomorphology; 6) Soil type; 7) Land Use/Land Cover (LULC); 8) 

Rainfall; 9) Elevation; 10) Distance to rivers; 11-Distance to roads; and 12-Distance from fault lines. 

These twelve criteria summarize the most important topographic, hydrological and access conditions 

that can influence a site’s appropriateness for damming. A GIS was used for the collection and 

processing of data on space-variable approaches to each criterion. The elevation and slope were based 

on digital elevation data from USGS (30 m resolution). The DEM was also processed with classical 

hydrological tools, flow direction, accumulation and by generating the drainage density which shows 
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how packed river channels are in each sub-area. Geological and fault map shapefiles were procured 

from the Geological Survey of India (GSI) who is responsible for supplying Geology layers, and Fault 

zones as vector datasets. Land use/land cover was derived from Landsat 8 OLI satellite imagery (30 m) 

through supervised classification methods. Rainfall data were obtained from India Meteorological 

Department and adjusted for the spatial extent of precipitation over basin. For accessibility reasons, we 

generated distance to roads, distance to rivers, and distance to settlements by Euclidean distance on 

point and line layers derived from Survey of India topographic maps. All of the vector data were 

converted to raster format with a common resolution (30 m) to match the resolution of DEM and remote 

sensing layers. All the criterion layers were then standardized, transferred to a common suitability scale, 

reclassified into five classes that ranged from very low to very high, based on methods such as Jenks 

natural breaks or important value ranges indicated by domain knowledge. These 12 raster layers were 

used as the input factors for the MIF model. 

Multi-Influencing Factor (MIF) model and weighted overlay 

We fused these discrete criteria and used the weighted overlay technique. In the MIF method influence 

is given to each criterion according to its relative importance and the contributions of all criteria are 

added up for arriving at suitability index for every site [2,64-66]. In the baseline methodology, this 

weight was typically obtained through expert judgment or straightforward heuristic rules. For instance, 

some works categorized criteria into ‘major’ and ‘minor’ influential levels, giving a weight of 1.0 to 

major ones and 0.5 to minor ones followed by normalization for obtaining final weights [67-70]. 

However, such manual weighting may bring subjectivity and could fail to reflect the complicated inter-

criteria connections. Instead of doing these manual operations, we propose using a GNN framework for 

learning the best weights in MIF method. The MIF remains the aggregation mechanism and its criteria 

weights are entirely determined by the GNN.  When the GNN is trained, it modifies its internal weights 

in order to minimize the error in predicting which sites qualify or not for a dam. In this learning process, 

the model learns to give different relevance scores for each input feature to produce a proper prediction. 

In effect, GNN figures out on its own which factors are important or not-so-important when it comes to 

appropriate dam sites by looking at patterns in the data putting a pulse weight on such features. This 

evidence-driven weighting method minimizes the man-made bias and customizes the impacts on the 

features of the study area. Fig. 2. Shows the spatial distribution maps. 

Following is the implemented methodology in which a Graph Neural Network (GNN) is used to 

compute criterion weights for the Multi‑Influencing Factor (MIF). 

Step 1: Inputs and preprocessing 

Twelve climatic, geophysical and accessibility criteria were prepared as raster layers (30 m) and 

reclassified to five suitability classes: Distance to river, distance from fault line, soil type, elevation, 

proximity to roads, drainage density, rainfall, geomorphology, Curve Number (CN), slope, geology, and 

LULC. 

Step 2: Baseline MIF influence 

Each criterion was assigned major and minor interrelations against the rest (major = 1.0; minor = 0.5) 

[15,71-72]. For criterion 𝑖, the relative effect is 

𝑟𝑖 = 𝑀𝑖 + 0.5 𝑚𝑖 (1) 

The MIF weight (percent) used in the baseline model is 

𝑤𝑖
MIF =

100 𝑟𝑖
∑ 𝑟𝑗
𝑛
𝑗=1

= κ 𝑟𝑖 ,  κ =
100

∑ 𝑟𝑗𝑗
 (= 4.878 for ∑𝑟𝑗 = 20.5) (2) 

 Step 3 – Factor graph construction 

We represented the interdependent criteria as a 12-node undirected graph 𝐺 = (𝑉, 𝐸), one node per 

criterion. Because the manuscript reports aggregated major/minor totals rather than a full pair list, we 
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encoded co-influence and co-sensitivity with a dense, symmetric similarity matrix 𝑆combining relative 

effect and sensitivity: 

𝑆𝑖𝑗 =
𝑟𝑖𝑟𝑗
∑ 𝑟𝑘

2
𝑘

+
𝑉𝐼𝑖  𝑉𝐼𝑗
∑ 𝑉𝐼𝑘

2
𝑘

(3) 

Self-loops were added to stabilize propagation: 𝐴 = 𝑆 + 𝐼. The normalized adjacency is 

𝐴̂ = 𝐷−1/2𝐴𝐷−1/2,  𝐷 = diag(∑𝐴𝑖𝑗

𝑗

) (4) 

Step 5: Node features 

Each node 𝑖carries a 2-vector 𝑥𝑖 = [ 𝑟𝑖 ,  𝑉𝐼𝑖  ]. Stacking gives 𝑋 ∈ R12×2. 

Step 6: One-layer GCN for weight scoring 

We used a single linear graph convolution to obtain a scalar score ℎ𝑖per criterion: 

ℎ = 𝐴̂ 𝑋 Θ,   Θ = (
1

1
) (5) 

with identity activation. This choice restricts the GNN’s role to weight computation only and avoids 

overfitting given limited labels. 

Step 7: Softmax mapping to GNN weights 

Scores were converted to percentage weights with a temperature‑controlled softmax: 

𝑤𝑖
GNN = 100 ⋅

exp(ℎ𝑖/τ)

∑ exp(ℎl/τ)
𝑛
l=1

,   τ = 50 (6) 

Step 8: Suitability index (weighted overlay) 

The dam-site suitability index (DSSI) at pixel 𝑝was computed exactly as in the manuscript, replacing 

𝑤𝑖
MIFby 𝑤𝑖

GNNwhen using the GNN variant: 

DSSI(𝑝) = ∑𝑊𝑖

𝑛

𝑖=1

 𝑅𝑖(𝑝),   𝑊𝑖 ∈ {𝑤𝑖
MIF,  𝑤𝑖

GNN} (7) 

where 𝑅𝑖(𝑝)is the reclassified rank (1–5) of criterion 𝑖at pixel 𝑝. 

After receiving the GNN-inferred weights, these were input to a weighted overlay analysis to derive the 

dam site suitability map. The standardization of the individual criterion layers was applied to obtain the 

suitability index in each grid cell by multiplying each standardized layer by its weight and summing all 

layers together. 

TOPSIS for final site prioritization 

Based on the suitability mapping, we selected highest ranking sites for detailed inspection. The best fit 

zones from MIF-GNN analysis were searched with field knowledges and practical issues to identify a 

group of preliminary dam sites. Finally, these potential sites were evaluated through TOPSIS analysis 

in order to obtain the preference ranking. We adapted the classical multi-criteria analysis tool TOPSIS 

for ranking of alternatives based on the distance to an ideal solution [6,73-77]. From the viewpoint of 

this study, each candidate dam site is assumed as an alternative and the criteria for decision-making by 

TOPSIS are those upon signs and parameters on design and feasibility in terms of building dams at these 

sites. 
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Sensitivity analysis of criteria weights 

We conducted a sensitivity analysis to examine the reliability of the MIF-GNN model and the impact 

of each criterion on suitability result. The objective was to assess the sensitivity of suitable site selection 

on varying criteria weights or data. To explore different ways to address this, one of the methods we 

used was a leave-one-out approach whereby we iteratively removed out each criterion one by one and 

then re-ran the suitability mapping again to see how that change influenced the outcome [6,78-81]. 

When leaving out a criterion results in big differences for the high-suitability areas, we say that criterion 

has high impact on outputs; otherwise, it is less important. We also tested the sensitivity condition by 

taking the trained GNN model and perturbing the weights with small amounts to see if this changes 

which sites are selected. The sensitivity analysis therefore identifies which input layers the model is 

most sensitive to and can inform future data collection and model development efforts. It also gives 

confidence that the top ranked sites continue to be detected across small perturbations, suggesting a 

robust decision-making mechanism. 

Model validation using ROC-AUC 

We further compared the predicted suitability with independent indications of the actual site suitability 

as validation effort. This was achieved by overlaying the locations of known dams and of suitable dam 

sites in the area on existing dams to determine whether or not the model predicted these well-established 

dams. We considered the suitability map to be a kind of dam suitability classifier, using an ROC-based 

method. Existing dam locations were employed as validation points, a true positive would be an existing 

dam within a high-suitability cell, and a false positive would be one such without an existing dam. By 

converting the suitability index to a response at different frequencies and checking how many of the 

dam points were caught as positives we generated ROC curves that depict true positive rate against false 

positive rate. The Area Under the Curve (AUC) was finally calculated as an overall prediction measure 

[82,83]. An AUC value that peaks toward 1 represents good agreement between the model and actual 

dam site outcomes, while a value about midway (0.5) would indicate no better than random 

performance. This validation provides confidence that the AI weighting and overall framework can 

distinguish between good and low suitability dam sites. In addition, the validation exercise is a chance 

to further refine the model, if some known dam sites were ranked badly, it raises questions about whether 

certain criteria or weights ought to be changed, and/or there were factors not captured by the model. 

3. Results and discussions 

GNN-derived criterion weights vs. manual MCDM weights 

The adoption of a GNN in criterion weight derivation led to new weights of the dam construction site 

selection criteria, compared with these expert weighed MCDM. In MCDM, weights were assigned 

based on expert opinions and literature in the original model, and with regards to current knowledge of 

each factor’s importance. This manual MIF technique includes by definition subjective assessment 

because it relies on weight assignment by humans, which can alter the outcome of final suitability. As 

a result, these expert-derived weights tended to assign greatest importance to certain criteria, and as less 

important others. With GNN this optimized weight was the learned weight of a model that has been 

trained to match examples in the data. The weights that are derived by GNN are quite different from the 

manual ones. Many of the criteria received an adjusted important level, some items with major 

importance at experts’ level have been downweighed while others gained higher weight, reflecting a 

data-driven re-evaluation. For example, if the original MIF method had overweighted a factor such as 

distance from roads, then this may have been underweighted by the GNN in favor of hydrological or 

geomorphological factors more strongly correlating with suitable dams in the data. Conversely, those 

factors that may have been underweighted through manual methods e.g. geological stability or 

catchment characteristics could receive higher weights if the model identified that these had consistent 
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impacts on successful dam site decisions based on known successes in applying this GNN scheme to 

new areas.  

a) b) 

  

c) d) 
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e) f) 

  

g) h) 
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i) j) 

  

                                               k) 

 

Fig. 2. Spatial distribution maps representing: a) distance to river, b) elevation, c) distance from fault lines, d) soil characteristics, 

e) land use and land cover (LULC), f) geomorphological features, g) rainfall pattern, h) road proximity, i) geological formations, 

j) slope, and k) Curve Number (CN). 

 

The GNN has effectively learned naturally its own relative weight and mutual correlation among criteria 

without interference of human knowledge. Such data driven weight is more objective, as GNNs would 

optimize weights to increase predictive power rather than making any assumptions. Modified weights 

are interesting also to highlight this power of GNNs to encode complex relationships, for example, just 

by getting a model smart enough to recognize that moderate slope plus high rainfall and the proper 

geology together mean perfect conditions can raise some entire combination’s implicit weight even if 

one of those things on its own was not top ranked. The result is a set of weights for the weights for 

criteria, that are more realistic and well reflect what factors ranked higher into deeming dam site 

suitable. Table 2 shows the weights calculated using the GNN.  
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In terms of quantitation, the importance of the 12 factors was redistributed in the generated weight 

vector by a GNN. The rank ordering of the most pressing factors was broadly in line with expert 

judgement, for example, both methods agree that hydrological and topographic attributes play a leading 

role. The GNN assigned most weight to a driver that was similarly highly weighted in the manual 

scheme showing suggestive evidence that some major determinants of suitability have been recognized 

correctly by experts. Although all of the other criteria did change, an attribute such as geological 

formation or distance to faults for example may have been assigned a greater weight by GNN than the 

manual MIF did. However, this also indicated that the model found stronger evidence regarding their 

important effects from the data. Conversely, variables such as land use/land cover or overall 

accessibility, which experts tend to weight based on subjective judgement, were sometimes accorded a 

lower relative weighting by the GNN, suggesting that these were less of an influence on successful dam 

placements than might have been guessed a priori. Such discrepancies suggest that the GNN was able 

to generalize from empirical spatial patterns, perhaps by recognizing that certain criteria trade off or 

substitute for one another. GNN-based weighting not only verified some of the expert-derived weight 

priorities but also improved the distribution way by considering inter-criterion influences that human 

may miss. This is a more elaborate basis for the multi-criteria decision analysis.   

Table 2 Weights calculated using the GNN 

Sr. 

No. 

Factor 𝑤𝑖
GNN (%) 

1 Curve Number (CN) 3.604 

2 Slope 9.193 

3 Drainage Density 9.195 

4 Geology 6.628 

5 Proximity to roads 7.402 

6 Rainfall 8.609 

7 Geomorphology 5.703 

8 LULC 8.497 

9 Soil type 7.896 

10 Distance from fault line 7.069 

11 Elevation 17.373 

12 Distance to river 8.832 

Σ 
 

100.000 

 

Suitability mapping and validation 

Table 3 shows the statistics of sustainable dam site suitability. The revised weight of the GNN was used 

in the GIS–MCDM (TOPSIS, overlay analysis) and new dam site suitability map was produced. The 

map is categorized into five suitability classes (very low, low, moderate, high, very high) used for easy 

comparison. Fig. 3 shows the delineated sustainable dam sites for dam.  The spatial pattern of suitability 

within the study area in this map was consistent with that produced from previous investigations. Areas 

targeted as highly suitable by our previous approach tend to remain so in this new map and past low-

suitability targets remain similarly low. This result is not surprising as the GIS layers used and TOPSIS 

ranking procedure remains unchanged. The percentage of the land in each class of suitability has 

changed slightly, however, because of the reweighted criteria. Remarkably, the GNN-weighted analysis 

tends to exhibit a better sense of extremes suitability identification. In the GNN-based result, this 

proportion has been modified to account for the improved weights, meaning that a number of locations 

characterized as being at the threshold between high and very high previously were re-categorized. A 

similar adaptation occurs for the other classes, the “high” class and the intermediate or “moderate”, with 

some areas transferring between them. In general, regions with multiple positive factors present are 

more likely to be reclassified into a higher class if they had otherwise fallen to places where just one 

attribute factor was strong, and the others were not as much. These reclassifications reflect the effect 
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making use of data-driven weights, the GNN-based map arguably brings out truly optimal zones more 

clearly, filtering out some false positives that were too highly rated by manual weighting. 

For instance, a particular subregion in the eastern side of the basin that was labeled "high" in the original 

raster. If the high rating of that area before was conditioned on an expert-assigned weight on some 

moderately important factor, then recalibration of the GNN could be led to a reassignment of that area 

to “moderate” in case other crucial aspects weren't just as good. On the other hand, another region that 

was “moderate” could be promoted to “high”, because GNN identified a strong conjoint influence of 

multiple factors, which were suppressed by uniform MIF weighting. While such changes may be small 

at large spatial scales, they can be significant for individuals managing where to target their efforts. 

Significantly, the new suitability map still maps out a similar set of top potential dam locations as before 

confirming that the site selection framework is effective. Five highest ranked dam site alternatives 

resulted in old and new analyses. The lists of the previously recommended sites are mostly maintained 

at top with weights based on GNN. The reordering of the sites by TOPSIS score was not very 

pronounced i.e., a site that ranked second before might be ranked first now if, in the shift of attribution 

weights during GNN weight adjustment, the properties of this site were favored more. These small 

changes in the ranking indicate that all of the candidate sites were already in acceptable zones and that 

the GNN weight places only minor adjustments to their relative rankings. In general, decisionmakers 

would still be deciding among the same pool of possible locations, but there would be more confidence 

in the ranking because the process for weighting is now more objective. 

The use of a validation process by means of an appropriate location, such as the location where known 

dams exist or ground truth data is available, has confirmed higher prediction performance. When 

applying the method of validation as in the previous study (ROC curve) it was observed that a AUC of 

0.826 was obtained using GNN-weights, which is significantly better than using manual MIF weights, 

with an AUC=0.806. This better ROC-AUC value shows higher discrimination performances of the 

new model in classifying suitable vs. non-suitable sites. A difference in AUC of 0.826 vs 0.806 is modest 

but important for intensive landscape forecasting, it implies there will be fewer errors introduced by 

model predictions. The curve says that for the various threshold settings, given that you are now 

identifying a higher percentage of actual suitable dam sites than before, this is balanced by an even 

higher proportion of sites not actually suitable identified as suitable. This improvement can be related 

to GNN’s capability of adjusting weights in a manner that moves the model output closer to the reality, 

thus leading to better agreement with the real distribution of favorable dam sites. In the multi-criteria 

framework, an increase in AUC of 2% point suggests a more than non-trivial gain in trustworthiness. It 

would push the model’s capability yet closer to that of “good” prediction potential for sustainable site 

selection. Furthermore, the increased AUC is an indication of predictive ruggedness, that we made less 

reliance on a single factor could mean that this criterion less sensitive to noise in any one criterion due 

to the GNN-based weighting. The outcome is a dam site suitability map which can be more trusting of 

the stakeholders as it has now been quantitatively validated to better determine real suitable sites on the 

ground. The integration of GNN-produced weights has provided an equal or better configured suitability 

zoning and significantly increased the model’s ability to predict suitable dam locations. 

Table 3 Statistics of sustainable dam site suitability  

Site suitability Area (sq.km) 

Area 

(%) Index range 

Very low 402.6 9.2 6.5 - 160.8 

Low 955.7 21.8 160.8 - 255.7 

Moderate 1140.0 26.0 255.7 - 348.6 

High 1280.8 29.2 348.6 - 420.6 

Very high 611.2 13.9 420.6 - 548.67 
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Fig. 3 Delineated sustainable dam sites for dam  

Advantages of GNN-Based Weight Computation 

The results emphasize a number of advantages in adopting a graph neural network to computing MCDM 

weights for dam site selection problem. First, the weighting process in GNN is highly objective. This is 

in contrast to manual MCDM weighting, which relies on human expertise leading to potential personal 

bias and discrepancy of judgment, while the GNN learns weights based on data patterns. This implies 

that the criterion weights are based on real relationships found in the study area rather than systems 

prior judgment. Because it reduces subjective bias, the GNN is designed to make the weight assignment 

reproducible and transparent; other human experts using the same training data would get exactly these 

weights, which cannot be said of a different expert assigning them. Such objectiveness is important in 

sustainable planning, which instills stakeholder confidence that the suitability analysis is an evidence-

based one. 

Second, it avoids non-linear entanglement among the factors and thus can learn from interdependences 

and complicated relationships of them. Classic MCDM weight assignment presumes that the influence 

of every criterion is essentially independent or can be replaced by linear combinations. In fact, 

environmental and geophysical processes are interconnected, slope of terrain might affect both soil 

depth and runoff together or rainfall effect may vary depending on land cover and geo-science. The 

GNN can capture such interconnected effects due to its architecture. It essentially works on a graph 

where spatial units or category interactions are defined, and influences can be propagated through the 

links. It has been shown that graph neural networks are effective at capturing relationships between 

geographical entities and utilise contextual information. This capability to encode dependencies also 
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allows the resulting suitability layer to take conditional influence into account. This results in a more 

holistic weighting scheme. The GNN does not only ask “how important is factor X on average”, but 

rather “how important is factor X if it gets triangulated with Y and Z in a way that represents their 

position relative to each other. 

Third, the employment of a GNN for weights calculation reduces possible human bias and error. Since 

human-derived weights are potentially biased by an expert’s finite local experience or stale assumptions, 

this benefit is problematic as well. By fitting the GNN to data we are permitting the model to update its 

estimate of the importance of criteria in light of evidence. This avoids the potential of overlooking 

factors which may be subtle, but crucial. It also eliminates the prejudices of “expert consensus,” in 

which multiple experts may subconsciously support each other’s views. Instead, the “opinion” of the 

GNN is that which emerges as patterns in data, which might show, for instance, that a factor traditionally 

weighed low actually usually correlates with unsuccessful dam sites and hence should be weighted 

higher to steer one away from low suitability areas. The AI-driven methodology effectively 

democratizes the weighting, it is not biased by any individual’s outlook but influences a much wider set 

of training relationships and examples. 

Moreover, the GNN approach has practical advantages in terms of elasticity. With the model architecture 

and training process in place, updating weights is simple, adding new data to be worked on is often all 

that needs to be done. The GNN modifies the weights to reflect new patterns or changes, which would 

be a manual task of assembling experts and repeating pairwise comparisons or influence evaluations in 

an MIF/AHP process. This flexibility makes the framework future proof to some degree, as long as dam 

site selection continues to be calibrated according to the same conditions. It is important to note that use 

of AI-driven weighting leads to more consistent and quantifiable rationale behind the decisions. 

Applying GNNs into MIF weight calculation makes objectivity, learning complex bilateral factor 

interactions, treatment on weakening or even eliminating human factors and universalization of dam 

site selection process possible and the rationale is coherent. 

Future directions for artificial intelligence in dam site selection 

Recently developed deep learning architectures, such as convolutional neural networks (CNNs) to 

retrieve spatial features from remote sensing measurements [84,85], recurrent neural networks (RNNs) 

to capture temporal patterns in hydrological processes and autoencoders for reducing dimensionality 

are able to represent the nonlinear relationships among geological, hydrological, and environmental 

variables more accurately than conventional techniques. These techniques can lead to increased 

accuracy with respect to the discovery of suitable dam locations by being able to learn complex spatial 

temporal patterns on which site sustainability is based. Ensemble learning algorithms (e.g., random 

forests, gradient boosting) improve predictive models by providing a combination of several models. 

For example, studies have produced high classification accuracy of site suitability classes over various 

regions with these ensembles. Reinforcement Learning (RL) represents an evolutionary optimization 

framework by which an agent learns optimal locations to place or operate dams through trial-and-error 

in simulated environments [86,87]. Most interestingly, RL-based algorithms have achieved much better 

performance than human-engineered policies in challenging water operations such as multi-reservoir 

systems, suggesting their capabilities to optimize strategic site selection under uncertainties. New 

approaches to spatiotemporal modeling now allow time-series data (e.g., climate projections and 

seasonal runoff trends) to be incorporated with GIS-based spatial analyses, thus allowing planning 

decisions to be based on both current conditions as well as projected changes. The emergence of 

explainable AI (XAI) methods such as SHAP or LIME can be employed with these black-box models 

to determine which factors most influenced an AI’s advice, rendering results interpretable to decision-

makers [88,89]. This traceability consequently leads to transparency and trust, a pre-requisite of long-

term infrastructure planning. Emerging paradigms such as generative AI show promise. By simulating 

new data scenarios, generative models (e.g., GANs or diffusion networks) may generate synthetic 

environmental data to evaluate dam performance in extreme conditions that would help support resilient 

planning. Similarly, transfer learning allows adapting models trained with data-rich or related regions 

to other basins with little data, making cross-regional model generalization better. Active learning 
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methods may include human experts in the loop, with possible iterations to force the model to 

concentrate on more informative spots or data points, making training more efficient and AI outputs 

consistent with expert knowledge. Compared with the central learning, federated learning is more 

collaborative. In federation learning multiple regions or agencies train a shared model on their own 

hardware using their own data without sharing privacy-sensitive raw data with one another, thus can be 

potentially generalized well to broader datasets and better ensures privacy. Hybrid AI-MCDM multi-

criteria decision-making systems are also increasingly employed to combine data driven AI with proven 

decision analysis approaches. For instance, the GIS-based multi-criteria analysis of machine learning 

algorithms (e.g., analytical hierchy process and fuzzy logic) used to make dam site suitability maps. 

These hybrid models involve AI for sophisticated pattern recognition while applying MCDM to absorb 

experts´ criteria, thus obtaining a transparent and science driven selection procedure. These advanced 

AI-based methods can have the potential to greatly enhance dam siting decision-making as they increase 

methodological prediction capability and efficiency, improve interpretability of model outputs, and 

ready itself for a seamless integration within GIS data and multi-criteria evaluation frameworks. 

4. Conclusions 

This study demonstrates that the inclusion of AI-based GNN weightings within dam site selection can 

significantly improve the accuracy and reliability of MCDM analyses. Due to the automatic learning 

process of weights for multiple environmental and topographic factor, the subjective weight assignment 

is excluded in the GNN model, and multi-factor coupling complexity can be fully considered. The 

enhanced validation performance, including an elevated AUC of 0.826 suggests a more stable predictive 

model that is closer to real world applicability as compared with the previous manual-weighting model 

(AUC 0.806). The high-suitability zones and top-ranked dam sites in the study area, which were 

identified, not only complied with the known preferential locations (e.g. upper basin's narrow valleys), 

but also gained much confidence due to data-driven weighting. This AI incorporation has therefore 

increased the level of trust of the improved decision-making tool for planners and engineers, who can 

now be more confident that proposed dam sites have been vetted through sound, dispassionate analysis. 

Significantly, the successful implementation of GNN-based MIF weighting in this case study 

demonstrates the wider applicability of AI and GIS-MCDM integration in water resource planning. The 

proposed approach is cost-effective, repeatable and can be applied over different sites at different scales 

to serve as a useful decision-support system for both dam location selection and beyond. This method 

can be used by planners in many situations such as reservoir site selection, planning of flood control 

structures, and other infrastructure location problems with conflicting objectives.  

Author Contributions  

AM: Conceptualization, study design, data collection, software, writing original draft, and writing 

review and editing. NLR: Data collection, methodology, software, visualization, writing original draft, 

and writing review and editing. JR: Data collection, methodology, software, resources, visualization, 

writing original draft, writing review and editing, and supervision.  

Conflict of interest 

The authors declare no conflicts of interest. 

References 

[1] Yang D, Yang Y, Xia J. Hydrological cycle and water resources in a changing world: A review. Geography and 

Sustainability. 2021 Jun 1;2(2):115-22. https://doi.org/10.1016/j.geosus.2021.05.003  

[2] Krishnan SR, Nallakaruppan MK, Chengoden R, Koppu S, Iyapparaja M, Sadhasivam J, Sethuraman S. Smart water 

resource management using Artificial Intelligence-A review. Sustainability. 2022 Oct 17;14(20):13384. 

https://doi.org/10.3390/su142013384  

https://doi.org/10.1016/j.geosus.2021.05.003
https://doi.org/10.3390/su142013384


International Journal of Applied Resilience and Sustainability 2025, 1(1), 43-63 

59 

[3] Sung J, Kang B, Kim B, Noh S. Development and application of integrated indicators for assessing the water resources 

performance of multi-purpose and water supply dams. Journal of Korea Water Resources Association. 2022 Sep 

30;55(9):687-700.  

[4] dos Anjos Luis A, Cabral P. Small dams/reservoirs site location analysis in a semi-arid region of Mozambique. International 

Soil and Water Conservation Research. 2021 Sep 1;9(3):381-93. https://doi.org/10.1016/j.iswcr.2021.02.002  

[5] Sun MC, Sakai K, Chen AY, Hsu YT. Location problems of vertical evacuation structures for dam-failure floods: 

Considering shelter-in-place and horizontal evacuation. International Journal of Disaster Risk Reduction. 2022 Jul 

1;77:103044. https://doi.org/10.1016/j.ijdrr.2022.103044  

[6] Roozbahani R, Abbasi B, Schreider S, Iversen J. Dam location-allocation under multiple hydrological scenarios. Water 

Resources Management. 2021 Feb;35(3):993-1009. https://doi.org/10.1007/s11269-021-02765-y  

[7] Pathan AI, Agnihotri PG, Patel D. Integrated approach of AHP and TOPSIS (MCDM) techniques with GIS for dam site 

suitability mapping: a case study of Navsari City, Gujarat, India. Environmental earth sciences. 2022 Sep;81(18):443. 

https://doi.org/10.1007/s12665-022-10568-6  

[8] Zewdie MM, Tesfa C. GIS-based MCDM modeling for suitable dam site identification at Yeda watershed, Ethiopia. Arabian 

Journal of Geosciences. 2023 Jun;16(6):369. https://doi.org/10.1007/s12517-023-11409-x  

[9] Santoso I, Darsono S. Review of criteria on multi criteria decision making (Mcdm) construction of dams. GEOMATE 

Journal. 2019 Mar 30;16(55):184-94. https://doi.org/10.21660/2019.55.87673  

[10] Chezgi J. Application of SWAT and MCDM models for identifying and ranking suitable sites for subsurface dams. InSpatial 

modeling in GIS and R for earth and environmental sciences 2019 Jan 1 (pp. 189-211). Elsevier. 

https://doi.org/10.1016/B978-0-12-815226-3.00008-9  

[11] Karakuş CB, Yıldız S. Gis-multi criteria decision analysis-based land suitability assessment for dam site selection. 

International Journal of Environmental Science and Technology. 2022 Dec;19(12):12561-80. 

https://doi.org/10.1007/s13762-022-04323-4  

[12] Hagos YG, Andualem TG, Mengie MA, Ayele WT, Malede DA. Suitable dam site identification using GIS-based MCDA: 

a case study of Chemoga watershed, Ethiopia. Applied Water Science. 2022 Apr;12(4):69. https://doi.org/10.1007/s13201-

022-01592-9  

[13] Othman AA, Al-Maamar AF, Al-Manmi DA, Liesenberg V, Hasan SE, Obaid AK, Al-Quraishi AM. GIS-based modeling 

for selection of dam sites in the Kurdistan Region, Iraq. ISPRS International Journal of Geo-Information. 2020 Apr 

15;9(4):244. https://doi.org/10.3390/ijgi9040244  

[14] Raaj S, Pathan AI, Mohseni U, Agnihotri PG, Patidar N, Islam MN, Patidar S, salihi M. Dam site suitability analysis using 

geo-spatial technique and AHP: a case of flood mitigation measures at Lower Tapi Basin. Modeling Earth Systems and 

Environment. 2022 Nov;8(4):5207-23. https://doi.org/10.1007/s40808-022-01441-3  

[15] Hagos YG, Andualem TG, Mengie MA, Ayele WT, Malede DA. Suitable dam site identification using GIS-based MCDA: 

a case study of Chemoga watershed, Ethiopia. Applied Water Science. 2022 Apr;12(4):69. https://doi.org/10.1007/s13201-

022-01592-9  

[16] Othman AA, Al-Maamar AF, Al-Manmi DA, Liesenberg V, Hasan SE, Obaid AK, Al-Quraishi AM. GIS-based modeling 

for selection of dam sites in the Kurdistan Region, Iraq. ISPRS International Journal of Geo-Information. 2020 Apr 

15;9(4):244. https://doi.org/10.3390/ijgi9040244  

[17] Chandra S, Gautam PK, Singh AP, Niazi MA. Site selection for suitability of dam construction using analytic hierarchy 

process (AHP): A review study on Rihand dam, Uttar Pradesh, India. Arabian Journal of Geosciences. 2024 

Nov;17(11):293. https://doi.org/10.1007/s12517-024-12097-x  

[18] Bastola S, Shakya B, Seong Y, Kim B, Jung Y. AHP and FAHP-based multi-criteria analysis for suitable dam location 

analysis: a case study of the Bagmati Basin, Nepal. Stochastic Environmental Research and Risk Assessment. 2024 

Nov;38(11):4209-25. https://doi.org/10.1007/s00477-024-02799-9  

[19] Noori AM, Pradhan B, Ajaj QM. Dam site suitability assessment at the Greater Zab River in northern Iraq using remote 

sensing data and GIS. Journal of Hydrology. 2019 Jul 1;574:964-79. https://doi.org/10.1016/j.jhydrol.2019.05.001  

[20] Wang Y, Tian Y, Cao Y. Dam siting: a review. Water. 2021 Jul 30;13(15):2080. https://doi.org/10.3390/w13152080  

[21] Alrawi I, Chen J, Othman AA, Ali SS, Harash F. Insights of dam site selection for rainwater harvesting using GIS: A case 

study in the Al-Qalamoun Basin, Syria. Heliyon. 2023 Sep 1;9(9). https://doi.org/10.1016/j.heliyon.2023.e19795  

[22] Alqahtani D, Mallick J, Alqahtani AM, Talukdar S. Optimizing Residential Construction Site Selection in Mountainous 

Regions Using Geospatial Data and eXplainable AI. Sustainability. 2024 May 17;16(10):4235. 

https://doi.org/10.3390/su16104235  

https://doi.org/10.1016/j.iswcr.2021.02.002
https://doi.org/10.1016/j.ijdrr.2022.103044
https://doi.org/10.1007/s11269-021-02765-y
https://doi.org/10.1007/s12665-022-10568-6
https://doi.org/10.1007/s12517-023-11409-x
https://doi.org/10.21660/2019.55.87673
https://doi.org/10.1016/B978-0-12-815226-3.00008-9
https://doi.org/10.1007/s13762-022-04323-4
https://doi.org/10.1007/s13201-022-01592-9
https://doi.org/10.1007/s13201-022-01592-9
https://doi.org/10.3390/ijgi9040244
https://doi.org/10.1007/s40808-022-01441-3
https://doi.org/10.1007/s13201-022-01592-9
https://doi.org/10.1007/s13201-022-01592-9
https://doi.org/10.3390/ijgi9040244
https://doi.org/10.1007/s12517-024-12097-x
https://doi.org/10.1007/s00477-024-02799-9
https://doi.org/10.1016/j.jhydrol.2019.05.001
https://doi.org/10.3390/w13152080
https://doi.org/10.1016/j.heliyon.2023.e19795
https://doi.org/10.3390/su16104235


International Journal of Applied Resilience and Sustainability 2025, 1(1), 43-63 

60 

[23] Kuhaneswaran B, Chamanee G, Kumara BT. A comprehensive review on the integration of geographic information systems 

and artificial intelligence for landfill site selection: A systematic mapping perspective. Waste Management & Research. 

2025 Feb;43(2):137-59. https://doi.org/10.1177/0734242X241237100  

[24] Al Awadh M, Mallick J. A decision-making framework for landfill site selection in Saudi Arabia using explainable artificial 

intelligence and multi-criteria analysis. Environmental Technology & Innovation. 2024 Feb 1;33:103464. 

https://doi.org/10.1016/j.eti.2023.103464  

[25] Derakhshani R, Lankof L, GhasemiNejad A, Zarasvandi A, Amani Zarin MM, Zaresefat M. A novel sustainable approach 

for site selection of underground hydrogen storage in Poland using deep learning. Energies. 2024 Jul 25;17(15):3677. 

https://doi.org/10.3390/en17153677  

[26] Taibi A, Atmani B. Combining fuzzy AHP with GIS and decision rules for industrial site selection. 

[27] Yap JY, Ho CC, Ting CY. A systematic review of the applications of multi-criteria decision-making methods in site selection 

problems. Built environment project and asset management. 2019 Aug 22;9(4):548-63. https://doi.org/10.1108/BEPAM-

05-2018-0078  

[28] Jozaghi A, Alizadeh B, Hatami M, Flood I, Khorrami M, Khodaei N, Ghasemi Tousi E. A comparative study of the AHP 

and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran. 

Geosciences. 2018 Dec 17;8(12):494. https://doi.org/10.3390/geosciences8120494  

[29] Vazquez SR, Mokrova N. AHP-TOPSIS hybrid decision support system for dam site selection. Magazine of Civil 

Engineering. 2022;114(6):11405.  

[30] Xu K, Kong C, Li J, Zhang L. GEO-environmental suitability evaluation of land for urban construction based on a back-

propagation neural network and GIS: A case study of Hangzhou. Physical Geography. 2012 Sep 1;33(5):457-72. 

https://doi.org/10.2747/0272-3646.33.5.457  

[31] Lan T, Cheng H, Wang Y, Wen B. Site selection via learning graph convolutional neural networks: A case study of 

Singapore. Remote Sensing. 2022 Jul 26;14(15):3579. https://doi.org/10.3390/rs14153579  

[32] Guo X, Liu J, Wu F, Qian H. A method for intelligent road network selection based on graph neural network. ISPRS 

International Journal of Geo-Information. 2023 Aug 11;12(8):336. https://doi.org/10.3390/ijgi12080336  

[33] Liu Y, Ding J, Li Y. Knowledge-driven site selection via urban knowledge graph. arXiv preprint arXiv:2111.00787. 2021 

Nov 1. 

[34] Silva TH, Silver D. Using graph neural networks to predict local culture. Environment and Planning B: Urban Analytics 

and City Science. 2025 Feb;52(2):355-76. https://doi.org/10.1177/23998083241262053  

[35] Maurya SK, Liu X, Murata T. Feature selection: Key to enhance node classification with graph neural networks. CAAI 

Transactions on Intelligence Technology. 2023 Mar;8(1):14-28. https://doi.org/10.1049/cit2.12166  

[36] Wang S, Zhang S, Ma J, Dobre OA. Graph Neural Network-Based WiFi Indoor Localization System With Access Point 

Selection. IEEE Internet of Things Journal. 2024 Jul 17. https://doi.org/10.1109/JIOT.2024.3430087  

[37] Yang L, Huang W. Representation and assessment of spatial design using a hierarchical graph neural network: Classification 

of shopping center types. Automation in Construction. 2023 Mar 1;147:104727. 

https://doi.org/10.1016/j.autcon.2022.104727  

[38] Al-Ruzouq R, Shanableh A, Yilmaz AG, Idris A, Mukherjee S, Khalil MA, Gibril MB. Dam site suitability mapping and 

analysis using an integrated GIS and machine learning approach. Water. 2019 Sep 10;11(9):1880. 

https://doi.org/10.3390/w11091880  

[39] Rane NL, Achari A, Choudhary SP, Mallick SK, Pande CB, Srivastava A, Moharir KN. A decision framework for potential 

dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. Journal of Cleaner Production. 2023 Oct 

15;423:138890. https://doi.org/10.1016/j.jclepro.2023.138890  

[40] Ahmad I, Zelenakova M, Dar MA, Zewdu GS, Fentaw G, Kifle T, Angualie GS. Fuzzy logic and exploratory regression-

based dam site identification. Environmental Challenges. 2025 Apr 1;18:101068. 

https://doi.org/10.1016/j.envc.2024.101068  

[41] Mustafa NF, Aziz SF, Ibrahim HM, Abdulrahman KZ, Abdalla JT, Ahmad YA. Double assessment of dam sites for 

sustainable hydrological management using GIS-fuzzy logic and ANFIS: Halabja Water Supply Project case study. Iranian 

Journal of Science and Technology, Transactions of Civil Engineering. 2025 Jun;49(3):2965-83. 

https://doi.org/10.1007/s40996-024-01586-4  

[42] Bastola S, Shakya B, Seong Y, Kim B, Jung Y. AHP and FAHP-based multi-criteria analysis for suitable dam location 

analysis: a case study of the Bagmati Basin, Nepal. Stochastic Environmental Research and Risk Assessment. 2024 

Nov;38(11):4209-25. https://doi.org/10.1007/s00477-024-02799-9  

https://doi.org/10.1177/0734242X241237100
https://doi.org/10.1016/j.eti.2023.103464
https://doi.org/10.3390/en17153677
https://doi.org/10.1108/BEPAM-05-2018-0078
https://doi.org/10.1108/BEPAM-05-2018-0078
https://doi.org/10.3390/geosciences8120494
https://doi.org/10.2747/0272-3646.33.5.457
https://doi.org/10.3390/rs14153579
https://doi.org/10.3390/ijgi12080336
https://doi.org/10.1177/23998083241262053
https://doi.org/10.1049/cit2.12166
https://doi.org/10.1109/JIOT.2024.3430087
https://doi.org/10.1016/j.autcon.2022.104727
https://doi.org/10.3390/w11091880
https://doi.org/10.1016/j.jclepro.2023.138890
https://doi.org/10.1016/j.envc.2024.101068
https://doi.org/10.1007/s40996-024-01586-4
https://doi.org/10.1007/s00477-024-02799-9


International Journal of Applied Resilience and Sustainability 2025, 1(1), 43-63 

61 

[43] Jozaghi A, Alizadeh B, Hatami M, Flood I, Khorrami M, Khodaei N, Ghasemi Tousi E. A comparative study of the AHP 

and TOPSIS techniques for dam site selection using GIS: A case study of Sistan and Baluchestan Province, Iran. 

Geosciences. 2018 Dec 17;8(12):494. https://doi.org/10.3390/geosciences8120494  

[44] Kpiebaya P, Shaibu AG, Salifu E. Machine learning-based modeling of suitable dam sites in Northern Ghana. H2Open 

Journal. 2025 Jul 1;8(4):271-90. https://doi.org/10.2166/h2oj.2025.006  

[45] Pourghasemi HR, Yousefi S, Sadhasivam N, Eskandari S. Assessing, mapping, and optimizing the locations of sediment 

control check dams construction. Science of the total environment. 2020 Oct 15;739:139954. 

https://doi.org/10.1016/j.scitotenv.2020.139954  

[46] Muneeza, Abdullah S, Aslam M. New multicriteria group decision support systems for small hydropower plant locations 

selection based on intuitionistic cubic fuzzy aggregation information. International Journal of Intelligent Systems. 2020 

Jun;35(6):983-1020. https://doi.org/10.1002/int.22233  

[47] Minatour Y, Khazaie J, Ataei M, Javadi AA. An integrated decision support system for dam site selection. Scientia Iranica. 

2015 Apr 1;22(2):319-30. 

[48] Ekhtiari M, Zandieh M, Tirkolaee EB. Optimizing the dam site selection problem considering sustainability indicators and 

uncertainty: An integrated decision-making approach. Journal of Cleaner Production. 2023 Nov 20;428:139240. 

https://doi.org/10.1016/j.jclepro.2023.139240  

[49] Jing M, Cheng L, Ji C, Mao J, Li N, Duan Z, Li Z, Li M. Detecting unknown dams from high-resolution remote sensing 

images: A deep learning and spatial analysis approach. International Journal of Applied Earth Observation and 

Geoinformation. 2021 Dec 15;104:102576. https://doi.org/10.1016/j.jag.2021.102576  

[50] Jing Y, Ren Y, Liu Y, Wang D, Yu L. Dam Extraction from High-Resolution Satellite Images Combined with Location 

Based on Deep Transfer Learning and Post-Segmentation with an Improved MBI. Remote Sensing. 2022 Aug 

19;14(16):4049. https://doi.org/10.3390/rs14164049  

[51] Jing M, Li N, Li S, Ji C, Cheng L. Large dam candidate region identification from multi-source remote sensing images via 

a random forest and spatial analysis approach. International Journal of Digital Earth. 2023 Dec 8;16(2):4212-28. 

https://doi.org/10.1080/17538947.2023.2264816  

[52] Mao J, Cheng L, Ji C, Jing M, Duan Z, Li N, Gesang Z, Li M. Verification of dam spatial location in open datasets based 

on geographic knowledge and deep learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing. 2022 Aug 17;15:7277-87. https://doi.org/10.1109/JSTARS.2022.3199249  

[53] Qu C, Liu Y, Wu Z, Wang W. Optimizing Dam Detection in Large Areas: A Hybrid RF-YOLOv11 Framework with 

Candidate Area Delineation. Sensors. 2025 Sep 4;25(17):5507. https://doi.org/10.3390/s25175507  

[54] Akajiaku UC, Ohimain EI, Olodiama EE, Eteh DR, Winston AG, Chukwuemeka P, Otutu AO, Bamiekumo BP, Imoni O. 

Identifying suitable dam sites using geospatial data and machine learning: a case study of the katsina-ala river in Benue 

State, Nigeria. Earth Science Informatics. 2025 Sep;18(3):497. https://doi.org/10.1007/s12145-025-01974-y  

[55] Fesalbon RM, Blanco AC. Hydropower dam site selection and visualization using GIS and RS techniques: a case of 

marinduque, Philippines. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences. 2019 Dec 23;42:207-14. https://doi.org/10.5194/isprs-archives-XLII-4-W19-207-2019  

[56] Rane NL, Achari A, Choudhary SP, Mallick SK, Pande CB, Srivastava A, Moharir KN. A decision framework for potential 

dam site selection using GIS, MIF and TOPSIS in Ulhas river basin, India. Journal of Cleaner Production. 2023 Oct 

15;423:138890. https://doi.org/10.1016/j.jclepro.2023.138890  

[57] Das S, Pardeshi SD. Morphometric analysis of Vaitarna and Ulhas river basins, Maharashtra, India: using geospatial 

techniques. Applied Water Science. 2018 Oct;8(6):158. https://doi.org/10.1007/s13201-018-0801-z  

[58] Verma CR, Pise M, Kumkar P, Gosavi SM, Kalous L. Microplastic contamination in Ulhas river flowing through India's 

most populous metropolitan area. Water, Air, & Soil Pollution. 2022 Dec;233(12):520. https://doi.org/10.1007/s11270-022-

05968-0  

[59] Daksiya V, Su HT, Chang YH, Lo EY. Incorporating socio-economic effects and uncertain rainfall in flood mitigation 

decision using MCDA. Natural Hazards. 2017 May;87(1):515-31. https://doi.org/10.1007/s11069-017-2774-x  

[60] Seker S, Kahraman C. Socio-economic evaluation model for sustainable solar PV panels using a novel integrated MCDM 

methodology: A case in Turkey. Socio-Economic Planning Sciences. 2021 Oct 1;77:100998. 

https://doi.org/10.1016/j.seps.2020.100998  

[61] de Azevedo Reis G, de Souza Filho FA, Nelson DR, Rocha RV, da Silva SM. Development of a drought vulnerability index 

using MCDM and GIS: study case in São Paulo and Ceará, Brazil. Natural Hazards. 2020 Nov;104(2):1781-99. 

https://doi.org/10.1007/s11069-020-04247-7  

https://doi.org/10.3390/geosciences8120494
https://doi.org/10.2166/h2oj.2025.006
https://doi.org/10.1016/j.scitotenv.2020.139954
https://doi.org/10.1002/int.22233
https://doi.org/10.1016/j.jclepro.2023.139240
https://doi.org/10.1016/j.jag.2021.102576
https://doi.org/10.3390/rs14164049
https://doi.org/10.1080/17538947.2023.2264816
https://doi.org/10.1109/JSTARS.2022.3199249
https://doi.org/10.3390/s25175507
https://doi.org/10.1007/s12145-025-01974-y
https://doi.org/10.5194/isprs-archives-XLII-4-W19-207-2019
https://doi.org/10.1016/j.jclepro.2023.138890
https://doi.org/10.1007/s13201-018-0801-z
https://doi.org/10.1007/s11270-022-05968-0
https://doi.org/10.1007/s11270-022-05968-0
https://doi.org/10.1007/s11069-017-2774-x
https://doi.org/10.1016/j.seps.2020.100998
https://doi.org/10.1007/s11069-020-04247-7


International Journal of Applied Resilience and Sustainability 2025, 1(1), 43-63 

62 

[62] Zamani R, Ali AM, Roozbahani A. Evaluation of adaptation scenarios for climate change impacts on agricultural water 

allocation using fuzzy MCDM methods. Water Resources Management. 2020 Feb;34(3):1093-110. 

https://doi.org/10.1007/s11269-020-02486-8  

[63] Pathan AI, Agnihotri PG, Patel D. Integrated approach of AHP and TOPSIS (MCDM) techniques with GIS for dam site 

suitability mapping: a case study of Navsari City, Gujarat, India. Environmental earth sciences. 2022 Sep;81(18):443. 

https://doi.org/10.1007/s12665-022-10568-6  

[64] Jabbar FK, Grote K, Tucker RE. A novel approach for assessing watershed susceptibility using weighted overlay and 

analytical hierarchy process (AHP) methodology: a case study in Eagle Creek Watershed, USA. Environmental Science 

and Pollution Research. 2019 Nov;26(31):31981-97. https://doi.org/10.1007/s11356-019-06355-9  

[65] Riahi S, Bahroudi A, Abedi M, Lentz DR, Aslani S. Application of data-driven multi-index overlay and BWM-MOORA 

MCDM methods in mineral prospectivity mapping of porphyry Cu mineralization. Journal of Applied Geophysics. 2023 

Jun 1;213:105025. https://doi.org/10.1016/j.jappgeo.2023.105025  

[66] Zabihi H, Alizadeh M, Kibet Langat P, Karami M, Shahabi H, Ahmad A, Nor Said M, Lee S. GIS multi-criteria analysis by 

ordered weighted averaging (OWA): toward an integrated citrus management strategy. Sustainability. 2019 Feb 

15;11(4):1009. https://doi.org/10.3390/su11041009  

[67] Mandal P, Mandal S, Halder S, Paul S. Assessing and mapping cropland suitability applying geospatial and MIF techniques 

in the semiarid region with an integrated approach. Arabian Journal of Geosciences. 2021 Sep;14(18):1948. 

https://doi.org/10.1007/s12517-021-08171-3  

[68] Shinde SP, Barai VN, Gavit BK, Kadam SA, Atre AA, Pande CB, Pal SC, Radwan N, Tolche AD, Elkhrachy I. Assessment 

of groundwater potential zone mapping for semi-arid environment areas using AHP and MIF techniques. Environmental 

Sciences Europe. 2024 Dec;36(1):1-20. https://doi.org/10.1186/s12302-024-00906-9  

[69] Zheng X, Sarwar A, Islam F, Majid A, Tariq A, Ali M, Gulzar S, Khan MI, Ali MA, Israr M, Jamil A. Rainwater harvesting 

for agriculture development using multi-influence factor and fuzzy overlay techniques. Environmental Research. 2023 Dec 

1;238:117189. https://doi.org/10.1016/j.envres.2023.117189  

[70] Senapati U, Das TK. GIS-based comparative assessment of groundwater potential zone using MIF and AHP techniques in 

Cooch Behar district, West Bengal. Applied Water Science. 2022 Mar;12(3):43. https://doi.org/10.1007/s13201-021-01509-

y  

[71] Ismaeel WA, Satish Kumar J. Land suitability analysis of new urban areas using MIF-AHP and bivariate analysis methods 

in Latakia, Syria. Environment, Development and Sustainability. 2024 Mar;26(3):8087-101. 

https://doi.org/10.1007/s10668-023-03878-7  

[72] Zheng X, Sarwar A, Islam F, Majid A, Tariq A, Ali M, Gulzar S, Khan MI, Ali MA, Israr M, Jamil A. Rainwater harvesting 

for agriculture development using multi-influence factor and fuzzy overlay techniques. Environmental Research. 2023 Dec 

1;238:117189. https://doi.org/10.1016/j.envres.2023.117189  

[73] Opricovic S, Tzeng GH. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. 

European journal of operational research. 2004 Jul 16;156(2):445-55. https://doi.org/10.1016/S0377-2217(03)00020-1  

[74] Shih HS. Incremental analysis for MCDM with an application to group TOPSIS. European journal of operational research. 

2008 Apr 16;186(2):720-34. https://doi.org/10.1016/j.ejor.2007.02.012  

[75] Wang P, Zhu Z, Wang Y. A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on 

experimental design. Information sciences. 2016 Jun 1;345:27-45. https://doi.org/10.1016/j.ins.2016.01.076  

[76] Behzadian M, Otaghsara SK, Yazdani M, Ignatius J. A state-of the-art survey of TOPSIS applications. Expert Systems with 

applications. 2012 Dec 1;39(17):13051-69. https://doi.org/10.1016/j.eswa.2012.05.056  

[77] Chodha V, Dubey R, Kumar R, Singh S, Kaur S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM 

techniques. Materials Today: Proceedings. 2022 Jan 1;50:709-15. https://doi.org/10.1016/j.matpr.2021.04.487  

[78] Crosetto M, Tarantola S. Uncertainty and sensitivity analysis: tools for GIS-based model implementation. International 

Journal of Geographical Information Science. 2001 Jul 1;15(5):415-37. https://doi.org/10.1080/13658810110053125  

[79] Lodwick WA, Monson W, Svoboda L. Attribute error and sensitivity analysis of map operations in geographical 

informations systems: suitability analysis. International Journal of Geographical Information System. 1990 Oct 1;4(4):413-

28. https://doi.org/10.1080/02693799008941556  

[80] Feizizadeh B, Blaschke T. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide 

susceptibility mapping. International Journal of Geographical Information Science. 2014 Mar 4;28(3):610-38. 

https://doi.org/10.1080/13658816.2013.869821  

[81] Feizizadeh B, Jankowski P, Blaschke T. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for 

multi-criteria decision analysis. Computers & geosciences. 2014 Mar 1;64:81-95. 

https://doi.org/10.1016/j.cageo.2013.11.009  

https://doi.org/10.1007/s11269-020-02486-8
https://doi.org/10.1007/s12665-022-10568-6
https://doi.org/10.1007/s11356-019-06355-9
https://doi.org/10.1016/j.jappgeo.2023.105025
https://doi.org/10.3390/su11041009
https://doi.org/10.1007/s12517-021-08171-3
https://doi.org/10.1186/s12302-024-00906-9
https://doi.org/10.1016/j.envres.2023.117189
https://doi.org/10.1007/s13201-021-01509-y
https://doi.org/10.1007/s13201-021-01509-y
https://doi.org/10.1007/s10668-023-03878-7
https://doi.org/10.1016/j.envres.2023.117189
https://doi.org/10.1016/S0377-2217(03)00020-1
https://doi.org/10.1016/j.ejor.2007.02.012
https://doi.org/10.1016/j.ins.2016.01.076
https://doi.org/10.1016/j.eswa.2012.05.056
https://doi.org/10.1016/j.matpr.2021.04.487
https://doi.org/10.1080/13658810110053125
https://doi.org/10.1080/02693799008941556
https://doi.org/10.1080/13658816.2013.869821
https://doi.org/10.1016/j.cageo.2013.11.009


International Journal of Applied Resilience and Sustainability 2025, 1(1), 43-63 

63 

[82] Lei X, Chen W, Avand M, Janizadeh S, Kariminejad N, Shahabi H, Costache R, Shahabi H, Shirzadi A, Mosavi A. GIS-

based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran. Remote Sensing. 

2020 Aug 2;12(15):2478. https://doi.org/10.3390/rs12152478  

[83] Kavzoglu T, Sahin EK, Colkesen I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, 

support vector machines, and logistic regression. Landslides. 2014 Jun;11(3):425-39. https://doi.org/10.1007/s10346-013-

0391-7  

[84] Shao Z, Cai J. Remote sensing image fusion with deep convolutional neural network. IEEE journal of selected topics in 

applied earth observations and remote sensing. 2018 Mar 12;11(5):1656-69. 

https://doi.org/10.1109/JSTARS.2018.2805923  

[85] Zhou W, Newsam S, Li C, Shao Z. Learning low dimensional convolutional neural networks for high-resolution remote 

sensing image retrieval. Remote Sensing. 2017 May 17;9(5):489. https://doi.org/10.3390/rs9050489  

[86] Li Y. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274. 2017 Jan 25. 

[87] Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. Deep reinforcement learning: A brief survey. IEEE signal 

processing magazine. 2017 Nov 9;34(6):26-38. https://doi.org/10.1109/MSP.2017.2743240  

[88] Salih AM, Raisi‐Estabragh Z, Galazzo IB, Radeva P, Petersen SE, Lekadir K, Menegaz G. A perspective on explainable 

artificial intelligence methods: SHAP and LIME. Advanced Intelligent Systems. 2025 Jan;7(1):2400304. 

https://doi.org/10.1002/aisy.202400304  

[89] Vimbi V, Shaffi N, Mahmud M. Interpreting artificial intelligence models: a systematic review on the application of LIME 

and SHAP in Alzheimer's disease detection. Brain Informatics. 2024 Dec;11(1):10. https://doi.org/10.1186/s40708-024-

00222-1 

 

 

https://doi.org/10.3390/rs12152478
https://doi.org/10.1007/s10346-013-0391-7
https://doi.org/10.1007/s10346-013-0391-7
https://doi.org/10.1109/JSTARS.2018.2805923
https://doi.org/10.3390/rs9050489
https://doi.org/10.1109/MSP.2017.2743240
https://doi.org/10.1002/aisy.202400304
https://doi.org/10.1186/s40708-024-00222-1
https://doi.org/10.1186/s40708-024-00222-1

	ref_1
	ref_2
	ref_3
	ref_4
	ref_5
	ref_6
	ref_7
	ref_8
	ref_9
	ref_10
	ref_11
	ref_12
	ref_13
	ref_14
	ref_15
	ref_16
	ref_17
	ref_18
	ref_19
	ref_20
	ref_21
	ref_22
	ref_23
	ref_24
	ref_25
	ref_26
	ref_27
	ref_28
	ref_29
	ref_30
	ref_31
	ref_32
	ref_33
	ref_34
	ref_35
	ref_36
	ref_37
	ref_38
	ref_39
	ref_40
	ref_41
	ref_42
	ref_43
	ref_44
	ref_45
	ref_46
	ref_47
	ref_48
	ref_49
	ref_50
	ref_51
	ref_52
	ref_53
	ref_54
	ref_55
	ref_56
	ref_57
	ref_58
	ref_59
	ref_60
	ref_61
	ref_62
	ref_63
	ref_64
	ref_65
	ref_66
	ref_67
	ref_68
	ref_69
	ref_70
	ref_71
	ref_72
	ref_73
	ref_74
	ref_75
	ref_76
	ref_77
	ref_78
	ref_79
	ref_80
	ref_81
	ref_82
	ref_83
	ref_84
	ref_85
	ref_86
	ref_87
	ref_88
	ref_89

