International Journal of Applied Resilience and Sustainability, Volume 1, Issue 1, October 2025, pp. 43-63

9

DeepScience

Published online at Deep Science

International Journal of Applied Resilience and Sustainability

Journal homepage: https://deepscipub.com/ijars

Sustainable dam site selection using artificial intelligence-based graph
neural networks with MCDM

Ashok Meti !, Nitin Liladhar Rane %, Jayesh Rane *

1 St. John College of Engineering and Management, Palghar, India
2 Architecture, Vivekanand Education Society's College of Architecture (VESCOA), Mumbai 400074, India
3 K. J. Somaiya College of Engineering, Vidyavihar, Mumbai, India

M) Check for updates

Article Info:

Received 26 July 2025
Revised 25 September 2025
Accepted 13 October 2025
Published 30 October 2025

Corresponding Author:
Jayesh Rane
E-mail: jayeshrane90@gmail.c

om

Copyright: © 2025 by the
authors. Licensee Deep Science
Publisher. This is an open-
access article published and
distributed under the Creative
Commons Attribution (CC BY)
license (https://creativecommo
ns.org/licenses/by/4.0/).

Abstract

Identification of suitable location for construction of dam/reservoir is important for the sustainable
development and flood control. This paper introduces a novel application between Artificial Intelligence (AI)
and multi-criteria decision making (MCDM) for the enhancement of dam site suitability evaluation. In this
research, Graph Neural Networks (GNNs) were introduced to automatically discriminate the MIF weights
and substituted the weight schemes used in previous MCDM methods. A total of 12 climatic, geophysical,
and accessibility indices working under a Geographic Information System (GIS) were considered. The GNN-
weights were used in weighted overlay analysis to create a dam suitability map, and the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS) was applied for ranking possible dam locations. The
results show that the GNN-based weights can significantly improve model accuracy, with the AUC value
increasing from 0.806 to 0.826 after incorporating them into consideration. The top-ranked site was the same
as previous reports, indicating that the method we used is robust. This Al-enhanced framework has greatly
advanced the objectivity and predictability of dam site selection strategies, thereby enhancing the moderator's
ability to make informed decisions when choosing sites for sustainable water infrastructures.

Keywords: Artificial intelligence, Graph neural networks, GNN, Dam site selection, Multi-criteria decision making,
Sensitivity analysis.

1. Introduction

Water resources are a major global concern due to the demands of climate change, population increase,
and urbanization [ 1-2]. Droughts in dry seasons and floods during wet seasons put many areas at risk.
Dams are key to addressing these challenges in terms of capturing water, controlling river discharge and
providing an assured supply for irrigation, drinking and hydroelectric power [3]. Dams can contribute
to water security and socio-economic development if planned properly as they manage floods and
droughts, which means that renewable energy production may be possible. Nevertheless, obtaining these
benefits is greatly conditioned by sustainable location of the dams, as the wrong localization can prove
to have social, environmental and economic complications. Choosing the best location for a dam is not
straightforward and depends on multiple criteria, ranging from technical and economic parameters to
social, environmental, and even political factors [4-6]. The optimization, among these not necessarily
compatible requirements is necessary in order to impact that the dam be safe, have an economic
justification and contribute to a sustainable development socially accepted.

The dam site selection is actually one of multi-criteria decision-making (MCDM) problems because of
several number of factors and stakeholders associated [7]. Conventional methods have used expertise-
based MCDM techniques integrated with geographic information system (GIS) applications to assess
the favorableness of alternative sites [8-13]. In MCDM, decision makers establish a set of criteria
(hydrology, geology, ecology, cost and community impact) along with associated weights based on their
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relative importance and rate the performance of each alternative relative to these criteria. Many MCDM
methods like AHP (Analytic Hierarchy Process), WLC (Weighted Linear Combination), TOPSIS
(Technique of Order Preference Similarity to Ideal Solution) and different fuzzy logic approaches are
commonly employed in dam site selection studies. For example, AHP was commonly used to derive
weights by conducting pairwise comparisons of criteria and incorporating expert knowledge in dam
suitability mapping [14-18]. A large number of case studies all over the world, such as locating small
dam site in arid region and reservoir planning have used AHP base GIS efficiently to generate dam
suitability maps ranging from low to very high suitability. One benefit of such MCDM methods is they
offer a structured, transparent process for combining multiple criteria to assist decision makers in
selecting areas that fulfill several different needs [19-21]. Although traditional MCDM methods are
widespread and have been shown in many studies to be very useful, they also possess some significant
drawbacks. They usually involve a great deal of expert judgment, and therefore they can be subjective
and biased. Whilst in fact many of the environmental and geotechnical parameters (say slope, elevation)
are interdependent, methods such as AHP assume independence of criteria [14]. This can impact the
ranking results themselves. What is more, classical GIS-MCDM usually oversimplifies complicated
phenomena: such as for accessibility when may consider only a single distance-to-road metric to
estimate how good a site connect to communities or ecosystems.

More recently, sophisticated Al and machine-learning methods have been introduced to optimize the
selection of sites [22-27]. There have been attempts to merge evolutionary algorithm techniques such
as genetic algorithms (GA) and ant colony optimization (ACO) with GIS for optimising multi-criteria
site selection. These methods can explore huge solution space to find out the best, or near-optimal site
combination under different constraints. Fuzzy extensions of MCDM (such as fuzzy AHP, fuzzy
TOPSIS) have been proposed for dealing with the uncertainty on criteria weighting and ranking in
making more robust or ambiguity approaching decisions. For instance, group fuzzy-TOPSIS models
have been applied to consider multiple experts' opinions in ranking dam site alternatives [19,28-29]. In
this context, the availability of more data through a growing amount of geospatial information and new
computational power has fostered an increasing number of data-driven approaches such as machine
learning models for suitability prediction. These models operate not only on user-defined expert
weights, but also learn patterns from past data if any is available of dam locations or suitability
measures. Types of classification and ensemble learning methods such as Random Forests (RF) and
Support Vector Machines (SVM) have been used to classify sites for suitability or unsuitability using a
training set of environmental and physical attributes. Neural network models have been studied for
better predictive mapping of site suitability [30]. For example, sophisticated neural network structures
(i.e., including deep learning models) were applied for check dam site selection in a sub-tropical river
basin and it can identify complex nonlinear relationships among hydro-geological factors. Compared to
conventional weighted overlays, these Al methods often provide substantial improvement by exploiting
large datasets (e.g., remote sensing layers and hydrological features) and complex feature interactions
so that dam site evaluations can be performed with higher objectivity and more powerful predictability.
Yet, many current machine learning models continue to consider each location as an independent sample
with no consideration for how the suitability of one site might inform the suitability of another, a concern
when dealing with connected networks in river systems.

To model spatial interactions and networks in the site selection problem, Graph Neural Networks
(GNNSs) are emerging as a state of-the-art Al approach [31-33]. GNNs are meant to process data with
graph structure or, abstractly, graphs as we could think of it: nodes for entities (e.g., places) and edges
indicating relationships or flows between them [6,34-37]. Unlike classical neural networks, GNNs can
learn representations that consider the relationships of sites, a characteristic critical to environmental
planning and infrastructure planning. In the framework of dam site selection, for example, a GNN could
similarly model A river basin to capture interactions between sites (e.g., by means of edges representing
hydrological or environmental connections) as A network (graph). This network-aware modeling might
help the Al learn how the suitability of one site is dependent on or affects other sites in the watershed,
how building a dam at one location would affect flood control or water availability elsewhere. The
combination of these graph-based interests with MCDM, would mark a substantial step forward for
sustainable dam site location, not just in terms of satisfying multiple criteria at the selected site, but with
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respect to considering whole system implications. Table 1 shows the literature on dam site selection
techniques and their applications.

Table 1. Summary of dam site selection techniques and their applications

References Technique Application (case and data) Validation /main
outcome
[38] GIS + AHP + ML overlay Dam suitability mapping (Sharjah, UAE) using 9 Produced DSSM and
layers (rainfall, slope, geology, lineaments, CN,  ranked dam sites
etc.)
[39] GIS + MIF-TOPSIS Potential dam site screening with 12 ROC-AUC =0.806;
climatic/geophysical/accessibility factors low-cost decision aid
[40] Fuzzy logic + exploratory GIS-based reclassification (geology, LULC, Data-driven fuzzy
regression slope, rainfall, soils) with fuzzy memberships weights; improved
interpretability
[41] FAHP — ANFIS (two-phase) Double assessment for sustainable siting (HWSP  Sequential
case); includes reservoir volume, sediment, cost =~ FAHP—ANFIS refined
choice (Zmkan-B)
[42] GIS-MCDA (AHP/FAHP) Basin-scale suitability (Bagmati River, Nepal); FAHP slightly
9+ criteria outperformed crisp
AHP
[43] AHP vs TOPSIS (comparative) GIS-based dam siting (geology, erosion, slope, Reported consistency &
groundwater, discharge, water quality) rank differences
[44] RF & SVM (supervised ML) Predict suitability from terrain/hydro factors; Demonstrated ML
data-driven classifiers feasibility for dam
siting
[45] BRT/MARS/MDA/RF/SVM Check-dam siting optimization; 5-model RF/SVM competitive;
comparison multi-model ensemble
insight
[46] Group MCDA for SHP Small hydropower site decision support with Structured group
planning group preferences decisions for plant
siting
[47] FAHP + VIKOR Earth-dam alternative ranking (18 criteria) Integrated fuzzy
weights + compromise
ranking
[48] Binary / nadir compromise Formal dam site selection problem (DSSP) Optimized
programming under certainty & uncertainty multi-objective site
choice
[49] Deep learning + spatial Detecting unknown dams from high-res RS to Broad-area detection
analysis feed candidate extraction pipeline
[50] YOLOvV5s-ViT-BiFPN Automatic dam extraction; RSDams dataset Precision ~ 88.2% after
transfer learning
[51] RF + spatial constraints Candidate-region identification for large dams (5 Reduced search to
countries) <1.06% of area
[52] Geographic knowledge + DL Verify dam locations in open datasets (SE Asia)  End-to-end verification
to build reliable inventories framework
[53] Hybrid RF + DL Large-area dam detection with geographic factor ~ Faster, scalable
analysis (Sindh, Pakistan) database enrichment
[54] GIS-MCDA + ML Dam siting (Nigeria): integrated geospatial/ ML~ Identified optimal sites
map with stream proximity & rainfall effects KAI/KA2
[55] RS—GIS pre-screen Hydropower dam siting from flow accumulation =~ Workflow for initial site

(flow/valley)

& valley algorithms

narrowing
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The aim of this research is to develop a sustainable dam site selection framework using an artificial
intelligence-based Graph Neural Network (GNN) integrated with multi-criteria decision-making
(MCDM) techniques. There are a number of key contributions from this study to the field of knowledge.
First, it applies a graph neural network to the dam site selection problem domain, thus linking modern
deep learning with classical multi-criteria analysis for spatial decision support. Second, it is a deep
analysis on the past methodologies (MCDM, fuzzy systems, evolutionary algorithms, machine learning)
for sustainable dam planning which achieves an overview of literature for researchers as well as
practicing engineers. Third, the proposed model offers in-depth insight into how to blend Al with
sustainability constraints and provides a decision support indexed which is based on data but achieves
good alignment for scheduling some values of an expert opinion versus computational speed, an
important tradeoff when addressing sustainable infrastructure. The work is a pioneering one towards
the next generation of intelligent decision systems for water resources engineering, which has
significant implications in making dam construction more sustainable and successful around the globe.

2. Methodology

Study Area

This study was carried out in the basin of the Ulhas River, Western Maharashtra, India (Fig. 1). This
catchment area is about 4,390 km? in extent and lies across parts of Thane, Raigad and Pune districts
[56]. The Ulhas River is the main river which flows from the eastern side of the city, beginning in
Rajmachi and flowing eventually into the sea. The river is joined by the Kalu and the Bhatsa rivers in
the basin, which increases its flow. The topography of the basin can be categorised into three main
geomorphologic zones: a western coastal lowland plain, a central pediment zone and an eastern highland
or escarpment area. These variables create a semi-circular catchment with dendritic drainage, and the
latter can cause concentrated water to flow towards the lower part of the basin. The climate in the Ulhas
basin is tropical monsoon. Annual precipitation is generally about 3,000 mm, most of this precipitates
during the June—September monsoon [56-58]. Heavy rains during this time can cause significant runoff.
The heaviest rainfall occurs along the eastern highlands, which are drained by a network of streams
flowing to join downstream rivers. Average temperatures are about 15°C in winter and 35°C in summer,
but the climate is moderate between the monsoons. The Deccan Traps basalt which covers most of the
study area [56]. The basin is underlain geologically by Late Cretaceous Deccan Traps and hard volcanic
surface rock that form the highest levels. Alluvial deposits and marine sediments lie on top of the basalt
near the coast and along river valleys, leaving areas of less rocky soil. Soil types range from coarse
alluvium in the coastal plains to shallow stony soils in the uplands.

The Ulhas River basin is heavily populated, with human settlement and development. Portions of the
basin fall under the Bombay Metropolitan Region (covers towns like Kalyan, Dombivli, Badlapur, Navi
Mumbai) and are depended upon for water supply directly using Ulhas River along with its tributaries.
Water demand has increased over recent decades due to rapid urbanisation, population growth and
further changes in land uses in the basin. This region is subject to flooding during heavy monsoon rains,
and (i) lack of adequate upstream storage or containment facilities, has caused downstream areas to
experience major floods, such as the Mumbai floods in 2005. On the other hand, during drier months
some areas in the basin suffer from water shortage for agriculture and human consumption. All these
factors underline the need for sustainable dam site selection in the Ulhas basin. Reservoirs are designed
to be strategically located, the goal is to capture extra monsoon runoff to prevent flooding and save
water for drought periods, with minimal socio-environmental effects. Hence, this study from Ulhas
basin is a case in point to illustrate an improved decision framework for dam site selection utilizing
state-of-the-art Al and MCDM approaches.
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Fig. 1 Location of the study area
GIS-MIF-TOPSIS framework

We utilized a GIS-based multi-criteria decision-making methodology that extends the traditional GIS—
MCDM-TOPSIS approach. In such a framework various thematic criteria are integrated through GIS
to produce a dam site suitability index, which is in turn utilized for selecting dam sites. These candidates
are refined by application of an MCDM technique and prioritized for final decision. The major steps of
the GIS-based technique include (i) Acquisition of data and preprocessing in GIS for relevant criteria
layers (ii) Weighting and aggregation of criteria to produce a suitability map using multi-influence factor
analysis model; (iii) Application of Graph Neural Network model to obtain multidimensional influence
factor weights. It replaces subjective or heuristic weighting of influence factors process;(v) Priority
ranking top candidate using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS);
(vi) Conduct sensitivity analysis to verify the robustness of influence factors and, lastly, validate results
use Receiver Operating Characteristic-Area Under Curve analysis with existing dam’s information. All
spatial analysis was performed in a GIS environment, and the process followed the standard workflow,
with exception of inclusion of a GNN-based weighting technique.

Data Acquisition and Criteria Preparation

An integrated approach should be adopted for dam site suitability assessment taking into account
environmental, hydrological and socio-economic aspects [59-63]. We used literature and guidelines to
find out 12 factors that affect decision-making of the site for dam construction. These in the form of
weather, geophysics and accessibility. The following criteria are used; 1) CN - Curve; 2) Slope; 3)
Drainage density; 4) Geology; 5) Geomorphology; 6) Soil type; 7) Land Use/Land Cover (LULC); 8)
Rainfall; 9) Elevation; 10) Distance to rivers; 11-Distance to roads; and 12-Distance from fault lines.
These twelve criteria summarize the most important topographic, hydrological and access conditions
that can influence a site’s appropriateness for damming. A GIS was used for the collection and
processing of data on space-variable approaches to each criterion. The elevation and slope were based
on digital elevation data from USGS (30 m resolution). The DEM was also processed with classical
hydrological tools, flow direction, accumulation and by generating the drainage density which shows
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how packed river channels are in each sub-area. Geological and fault map shapefiles were procured
from the Geological Survey of India (GSI) who is responsible for supplying Geology layers, and Fault
zones as vector datasets. Land use/land cover was derived from Landsat 8 OLI satellite imagery (30 m)
through supervised classification methods. Rainfall data were obtained from India Meteorological
Department and adjusted for the spatial extent of precipitation over basin. For accessibility reasons, we
generated distance to roads, distance to rivers, and distance to settlements by Euclidean distance on
point and line layers derived from Survey of India topographic maps. All of the vector data were
converted to raster format with a common resolution (30 m) to match the resolution of DEM and remote
sensing layers. All the criterion layers were then standardized, transferred to a common suitability scale,
reclassified into five classes that ranged from very low to very high, based on methods such as Jenks
natural breaks or important value ranges indicated by domain knowledge. These 12 raster layers were
used as the input factors for the MIF model.

Multi-Influencing Factor (MIF) model and weighted overlay

We fused these discrete criteria and used the weighted overlay technique. In the MIF method influence
is given to each criterion according to its relative importance and the contributions of all criteria are
added up for arriving at suitability index for every site [2,64-66]. In the baseline methodology, this
weight was typically obtained through expert judgment or straightforward heuristic rules. For instance,
some works categorized criteria into ‘major’ and ‘minor’ influential levels, giving a weight of 1.0 to
major ones and 0.5 to minor ones followed by normalization for obtaining final weights [67-70].
However, such manual weighting may bring subjectivity and could fail to reflect the complicated inter-
criteria connections. Instead of doing these manual operations, we propose using a GNN framework for
learning the best weights in MIF method. The MIF remains the aggregation mechanism and its criteria
weights are entirely determined by the GNN. When the GNN is trained, it modifies its internal weights
in order to minimize the error in predicting which sites qualify or not for a dam. In this learning process,
the model learns to give different relevance scores for each input feature to produce a proper prediction.
In effect, GNN figures out on its own which factors are important or not-so-important when it comes to
appropriate dam sites by looking at patterns in the data putting a pulse weight on such features. This
evidence-driven weighting method minimizes the man-made bias and customizes the impacts on the
features of the study area. Fig. 2. Shows the spatial distribution maps.

Following is the implemented methodology in which a Graph Neural Network (GNN) is used to
compute criterion weights for the Multi-Influencing Factor (MIF).

Step 1: Inputs and preprocessing

Twelve climatic, geophysical and accessibility criteria were prepared as raster layers (30 m) and
reclassified to five suitability classes: Distance to river, distance from fault line, soil type, elevation,
proximity to roads, drainage density, rainfall, geomorphology, Curve Number (CN), slope, geology, and
LULC.

Step 2: Baseline MIF influence

Each criterion was assigned major and minor interrelations against the rest (major = 1.0; minor = 0.5)
[15,71-72]. For criterion i, the relative effect is

= M,: +0.5 m; (1)

The MIF weight (percent) used in the baseline model is

1001; 100
MIF i E
; =xr, K= = 4.878 for r; = 20.5 2
DY L L7 ( ! )

Step 3 — Factor graph construction

We represented the interdependent criteria as a 12-node undirected graph G = (V, E), one node per
criterion. Because the manuscript reports aggregated major/minor totals rather than a full pair list, we
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encoded co-influence and co-sensitivity with a dense, symmetric similarity matrix Scombining relative
effect and sensitivity:

TL‘T']' Vll VIJ

S0 S S ®
Self-loops were added to stabilize propagation: A = S + I. The normalized adjacency is
A=D"Y24AD72, D = diag ZAU @)
J
Step 5: Node features
Each node icarries a 2-vector x; = [1;, VI; ]. Stacking gives X € R12*2,
Step 6: One-layer GCN for weight scoring
We used a single linear graph convolution to obtain a scalar score h;per criterion:
h=A4Xxo, @=(1) ®

with identity activation. This choice restricts the GNN’s role to weight computation only and avoids
overfitting given limited labels.

Step 7: Softmax mapping to GNN weights
Scores were converted to percentage weights with a temperature-controlled softmax:

exp(h;/T)
wiW =100 00—, =50 6
l ST exp (/) ©)

Step 8: Suitability index (weighted overlay)

The dam-site suitability index (DSSI) at pixel pwas computed exactly as in the manuscript, replacing
wMFby wNNwhen using the GNN variant:

DSSI(p) = ) W Rip), Wy € (wi™, wiN) )

i=1
where R;(p)is the reclassified rank (1-5) of criterion iat pixel p.

After receiving the GNN-inferred weights, these were input to a weighted overlay analysis to derive the
dam site suitability map. The standardization of the individual criterion layers was applied to obtain the
suitability index in each grid cell by multiplying each standardized layer by its weight and summing all
layers together.

TOPSIS for final site prioritization

Based on the suitability mapping, we selected highest ranking sites for detailed inspection. The best fit
zones from MIF-GNN analysis were searched with field knowledges and practical issues to identify a
group of preliminary dam sites. Finally, these potential sites were evaluated through TOPSIS analysis
in order to obtain the preference ranking. We adapted the classical multi-criteria analysis tool TOPSIS
for ranking of alternatives based on the distance to an ideal solution [6,73-77]. From the viewpoint of
this study, each candidate dam site is assumed as an alternative and the criteria for decision-making by
TOPSIS are those upon signs and parameters on design and feasibility in terms of building dams at these
sites.
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Sensitivity analysis of criteria weights

We conducted a sensitivity analysis to examine the reliability of the MIF-GNN model and the impact
of each criterion on suitability result. The objective was to assess the sensitivity of suitable site selection
on varying criteria weights or data. To explore different ways to address this, one of the methods we
used was a leave-one-out approach whereby we iteratively removed out each criterion one by one and
then re-ran the suitability mapping again to see how that change influenced the outcome [6,78-81].
When leaving out a criterion results in big differences for the high-suitability areas, we say that criterion
has high impact on outputs; otherwise, it is less important. We also tested the sensitivity condition by
taking the trained GNN model and perturbing the weights with small amounts to see if this changes
which sites are selected. The sensitivity analysis therefore identifies which input layers the model is
most sensitive to and can inform future data collection and model development efforts. It also gives
confidence that the top ranked sites continue to be detected across small perturbations, suggesting a
robust decision-making mechanism.

Model validation using ROC-AUC

We further compared the predicted suitability with independent indications of the actual site suitability
as validation effort. This was achieved by overlaying the locations of known dams and of suitable dam
sites in the area on existing dams to determine whether or not the model predicted these well-established
dams. We considered the suitability map to be a kind of dam suitability classifier, using an ROC-based
method. Existing dam locations were employed as validation points, a true positive would be an existing
dam within a high-suitability cell, and a false positive would be one such without an existing dam. By
converting the suitability index to a response at different frequencies and checking how many of the
dam points were caught as positives we generated ROC curves that depict true positive rate against false
positive rate. The Area Under the Curve (AUC) was finally calculated as an overall prediction measure
[82,83]. An AUC value that peaks toward 1| represents good agreement between the model and actual
dam site outcomes, while a value about midway (0.5) would indicate no better than random
performance. This validation provides confidence that the Al weighting and overall framework can
distinguish between good and low suitability dam sites. In addition, the validation exercise is a chance
to further refine the model, if some known dam sites were ranked badly, it raises questions about whether
certain criteria or weights ought to be changed, and/or there were factors not captured by the model.

3. Results and discussions

GNN-derived criterion weights vs. manual MCDM weights

The adoption of a GNN in criterion weight derivation led to new weights of the dam construction site
selection criteria, compared with these expert weighed MCDM. In MCDM, weights were assigned
based on expert opinions and literature in the original model, and with regards to current knowledge of
each factor’s importance. This manual MIF technique includes by definition subjective assessment
because it relies on weight assignment by humans, which can alter the outcome of final suitability. As
a result, these expert-derived weights tended to assign greatest importance to certain criteria, and as less
important others. With GNN this optimized weight was the learned weight of a model that has been
trained to match examples in the data. The weights that are derived by GNN are quite different from the
manual ones. Many of the criteria received an adjusted important level, some items with major
importance at experts’ level have been downweighed while others gained higher weight, reflecting a
data-driven re-evaluation. For example, if the original MIF method had overweighted a factor such as
distance from roads, then this may have been underweighted by the GNN in favor of hydrological or
geomorphological factors more strongly correlating with suitable dams in the data. Conversely, those
factors that may have been underweighted through manual methods e.g. geological stability or
catchment characteristics could receive higher weights if the model identified that these had consistent
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impacts on successful dam site decisions based on known successes in applying this GNN scheme to
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Fig. 2. Spatial distribution maps representing: a) distance to river, b) elevation, c) distance from fault lines, d) soil characteristics,
e) land use and land cover (LULC), f) geomorphological features, g) rainfall pattern, h) road proximity, i) geological formations,
j) slope, and k) Curve Number (CN).

The GNN has effectively learned naturally its own relative weight and mutual correlation among criteria
without interference of human knowledge. Such data driven weight is more objective, as GNNs would
optimize weights to increase predictive power rather than making any assumptions. Modified weights
are interesting also to highlight this power of GNNs to encode complex relationships, for example, just
by getting a model smart enough to recognize that moderate slope plus high rainfall and the proper
geology together mean perfect conditions can raise some entire combination’s implicit weight even if
one of those things on its own was not top ranked. The result is a set of weights for the weights for
criteria, that are more realistic and well reflect what factors ranked higher into deeming dam site
suitable. Table 2 shows the weights calculated using the GNN.
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In terms of quantitation, the importance of the 12 factors was redistributed in the generated weight
vector by a GNN. The rank ordering of the most pressing factors was broadly in line with expert
judgement, for example, both methods agree that hydrological and topographic attributes play a leading
role. The GNN assigned most weight to a driver that was similarly highly weighted in the manual
scheme showing suggestive evidence that some major determinants of suitability have been recognized
correctly by experts. Although all of the other criteria did change, an attribute such as geological
formation or distance to faults for example may have been assigned a greater weight by GNN than the
manual MIF did. However, this also indicated that the model found stronger evidence regarding their
important effects from the data. Conversely, variables such as land use/land cover or overall
accessibility, which experts tend to weight based on subjective judgement, were sometimes accorded a
lower relative weighting by the GNN, suggesting that these were less of an influence on successful dam
placements than might have been guessed a priori. Such discrepancies suggest that the GNN was able
to generalize from empirical spatial patterns, perhaps by recognizing that certain criteria trade off or
substitute for one another. GNN-based weighting not only verified some of the expert-derived weight
priorities but also improved the distribution way by considering inter-criterion influences that human
may miss. This is a more elaborate basis for the multi-criteria decision analysis.

Table 2 Weights calculated using the GNN

Sr.  Factor wiNN (%)
No.
1 Curve Number (CN) 3.604
2 Slope 9.193
3 Drainage Density 9.195
4 Geology 6.628
5 Proximity to roads 7.402
6 Rainfall 8.609
7 Geomorphology 5.703
8 LULC 8.497
9 Soil type 7.896
10 Distance from fault line  7.069
11 Elevation 17.373
12 Distance to river 8.832
) 100.000

Suitability mapping and validation

Table 3 shows the statistics of sustainable dam site suitability. The revised weight of the GNN was used
in the GIS-MCDM (TOPSIS, overlay analysis) and new dam site suitability map was produced. The
map is categorized into five suitability classes (very low, low, moderate, high, very high) used for easy
comparison. Fig. 3 shows the delineated sustainable dam sites for dam. The spatial pattern of suitability
within the study area in this map was consistent with that produced from previous investigations. Areas
targeted as highly suitable by our previous approach tend to remain so in this new map and past low-
suitability targets remain similarly low. This result is not surprising as the GIS layers used and TOPSIS
ranking procedure remains unchanged. The percentage of the land in each class of suitability has
changed slightly, however, because of the reweighted criteria. Remarkably, the GNN-weighted analysis
tends to exhibit a better sense of extremes suitability identification. In the GNN-based result, this
proportion has been modified to account for the improved weights, meaning that a number of locations
characterized as being at the threshold between high and very high previously were re-categorized. A
similar adaptation occurs for the other classes, the “high” class and the intermediate or “moderate”, with
some areas transferring between them. In general, regions with multiple positive factors present are
more likely to be reclassified into a higher class if they had otherwise fallen to places where just one
attribute factor was strong, and the others were not as much. These reclassifications reflect the effect
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making use of data-driven weights, the GNN-based map arguably brings out truly optimal zones more
clearly, filtering out some false positives that were too highly rated by manual weighting.

For instance, a particular subregion in the eastern side of the basin that was labeled "high" in the original
raster. If the high rating of that area before was conditioned on an expert-assigned weight on some
moderately important factor, then recalibration of the GNN could be led to a reassignment of that area
to “moderate” in case other crucial aspects weren't just as good. On the other hand, another region that
was “moderate” could be promoted to “high”, because GNN identified a strong conjoint influence of
multiple factors, which were suppressed by uniform MIF weighting. While such changes may be small
at large spatial scales, they can be significant for individuals managing where to target their efforts.
Significantly, the new suitability map still maps out a similar set of top potential dam locations as before
confirming that the site selection framework is effective. Five highest ranked dam site alternatives
resulted in old and new analyses. The lists of the previously recommended sites are mostly maintained
at top with weights based on GNN. The reordering of the sites by TOPSIS score was not very
pronounced i.e., a site that ranked second before might be ranked first now if, in the shift of attribution
weights during GNN weight adjustment, the properties of this site were favored more. These small
changes in the ranking indicate that all of the candidate sites were already in acceptable zones and that
the GNN weight places only minor adjustments to their relative rankings. In general, decisionmakers
would still be deciding among the same pool of possible locations, but there would be more confidence
in the ranking because the process for weighting is now more objective.

The use of a validation process by means of an appropriate location, such as the location where known
dams exist or ground truth data is available, has confirmed higher prediction performance. When
applying the method of validation as in the previous study (ROC curve) it was observed that a AUC of
0.826 was obtained using GNN-weights, which is significantly better than using manual MIF weights,
with an AUC=0.806. This better ROC-AUC value shows higher discrimination performances of the
new model in classifying suitable vs. non-suitable sites. A difference in AUC of 0.826 vs 0.806 is modest
but important for intensive landscape forecasting, it implies there will be fewer errors introduced by
model predictions. The curve says that for the various threshold settings, given that you are now
identifying a higher percentage of actual suitable dam sites than before, this is balanced by an even
higher proportion of sites not actually suitable identified as suitable. This improvement can be related
to GNN’s capability of adjusting weights in a manner that moves the model output closer to the reality,
thus leading to better agreement with the real distribution of favorable dam sites. In the multi-criteria
framework, an increase in AUC of 2% point suggests a more than non-trivial gain in trustworthiness. It
would push the model’s capability yet closer to that of “good” prediction potential for sustainable site
selection. Furthermore, the increased AUC is an indication of predictive ruggedness, that we made less
reliance on a single factor could mean that this criterion less sensitive to noise in any one criterion due
to the GNN-based weighting. The outcome is a dam site suitability map which can be more trusting of
the stakeholders as it has now been quantitatively validated to better determine real suitable sites on the
ground. The integration of GNN-produced weights has provided an equal or better configured suitability
zoning and significantly increased the model’s ability to predict suitable dam locations.

Table 3 Statistics of sustainable dam site suitability

Area
Site suitability Area (sq.km) (%) Index range
Very low 402.6 9.2 6.5-160.8
Low 955.7 21.8 160.8 - 255.7
Moderate 1140.0 26.0 255.7-348.6
High 1280.8 29.2 348.6 - 420.6
Very high 611.2 13.9 420.6 - 548.67
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Advantages of GNN-Based Weight Computation

The results emphasize a number of advantages in adopting a graph neural network to computing MCDM
weights for dam site selection problem. First, the weighting process in GNN is highly objective. This is
in contrast to manual MCDM weighting, which relies on human expertise leading to potential personal
bias and discrepancy of judgment, while the GNN learns weights based on data patterns. This implies
that the criterion weights are based on real relationships found in the study area rather than systems
prior judgment. Because it reduces subjective bias, the GNN is designed to make the weight assignment
reproducible and transparent; other human experts using the same training data would get exactly these
weights, which cannot be said of a different expert assigning them. Such objectiveness is important in
sustainable planning, which instills stakeholder confidence that the suitability analysis is an evidence-
based one.

Second, it avoids non-linear entanglement among the factors and thus can learn from interdependences
and complicated relationships of them. Classic MCDM weight assignment presumes that the influence
of every criterion is essentially independent or can be replaced by linear combinations. In fact,
environmental and geophysical processes are interconnected, slope of terrain might affect both soil
depth and runoff together or rainfall effect may vary depending on land cover and geo-science. The
GNN can capture such interconnected effects due to its architecture. It essentially works on a graph
where spatial units or category interactions are defined, and influences can be propagated through the
links. It has been shown that graph neural networks are effective at capturing relationships between
geographical entities and utilise contextual information. This capability to encode dependencies also
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allows the resulting suitability layer to take conditional influence into account. This results in a more
holistic weighting scheme. The GNN does not only ask “how important is factor X on average”, but
rather “how important is factor X if it gets triangulated with Y and Z in a way that represents their
position relative to each other.

Third, the employment of a GNN for weights calculation reduces possible human bias and error. Since
human-derived weights are potentially biased by an expert’s finite local experience or stale assumptions,
this benefit is problematic as well. By fitting the GNN to data we are permitting the model to update its
estimate of the importance of criteria in light of evidence. This avoids the potential of overlooking
factors which may be subtle, but crucial. It also eliminates the prejudices of “expert consensus,” in
which multiple experts may subconsciously support each other’s views. Instead, the “opinion” of the
GNN is that which emerges as patterns in data, which might show, for instance, that a factor traditionally
weighed low actually usually correlates with unsuccessful dam sites and hence should be weighted
higher to steer one away from low suitability areas. The Al-driven methodology effectively
democratizes the weighting, it is not biased by any individual’s outlook but influences a much wider set
of training relationships and examples.

Moreover, the GNN approach has practical advantages in terms of elasticity. With the model architecture
and training process in place, updating weights is simple, adding new data to be worked on is often all
that needs to be done. The GNN modifies the weights to reflect new patterns or changes, which would
be a manual task of assembling experts and repeating pairwise comparisons or influence evaluations in
an MIF/AHP process. This flexibility makes the framework future proof to some degree, as long as dam
site selection continues to be calibrated according to the same conditions. It is important to note that use
of Al-driven weighting leads to more consistent and quantifiable rationale behind the decisions.
Applying GNNs into MIF weight calculation makes objectivity, learning complex bilateral factor
interactions, treatment on weakening or even eliminating human factors and universalization of dam
site selection process possible and the rationale is coherent.

Future directions for artificial intelligence in dam site selection

Recently developed deep learning architectures, such as convolutional neural networks (CNNs) to
retrieve spatial features from remote sensing measurements [84,85], recurrent neural networks (RNN’s)
to capture temporal patterns in hydrological processes and autoencoders for reducing dimensionality
are able to represent the nonlinear relationships among geological, hydrological, and environmental
variables more accurately than conventional techniques. These techniques can lead to increased
accuracy with respect to the discovery of suitable dam locations by being able to learn complex spatial
temporal patterns on which site sustainability is based. Ensemble learning algorithms (e.g., random
forests, gradient boosting) improve predictive models by providing a combination of several models.
For example, studies have produced high classification accuracy of site suitability classes over various
regions with these ensembles. Reinforcement Learning (RL) represents an evolutionary optimization
framework by which an agent learns optimal locations to place or operate dams through trial-and-error
in simulated environments [86,87]. Most interestingly, RL-based algorithms have achieved much better
performance than human-engineered policies in challenging water operations such as multi-reservoir
systems, suggesting their capabilities to optimize strategic site selection under uncertainties. New
approaches to spatiotemporal modeling now allow time-series data (e.g., climate projections and
seasonal runoff trends) to be incorporated with GIS-based spatial analyses, thus allowing planning
decisions to be based on both current conditions as well as projected changes. The emergence of
explainable Al (XAI) methods such as SHAP or LIME can be employed with these black-box models
to determine which factors most influenced an Al’s advice, rendering results interpretable to decision-
makers [88,89]. This traceability consequently leads to transparency and trust, a pre-requisite of long-
term infrastructure planning. Emerging paradigms such as generative Al show promise. By simulating
new data scenarios, generative models (e.g., GANs or diffusion networks) may generate synthetic
environmental data to evaluate dam performance in extreme conditions that would help support resilient
planning. Similarly, transfer learning allows adapting models trained with data-rich or related regions
to other basins with little data, making cross-regional model generalization better. Active learning
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methods may include human experts in the loop, with possible iterations to force the model to
concentrate on more informative spots or data points, making training more efficient and Al outputs
consistent with expert knowledge. Compared with the central learning, federated learning is more
collaborative. In federation learning multiple regions or agencies train a shared model on their own
hardware using their own data without sharing privacy-sensitive raw data with one another, thus can be
potentially generalized well to broader datasets and better ensures privacy. Hybrid AI-MCDM multi-
criteria decision-making systems are also increasingly employed to combine data driven Al with proven
decision analysis approaches. For instance, the GIS-based multi-criteria analysis of machine learning
algorithms (e.g., analytical hierchy process and fuzzy logic) used to make dam site suitability maps.
These hybrid models involve Al for sophisticated pattern recognition while applying MCDM to absorb
experts’ criteria, thus obtaining a transparent and science driven selection procedure. These advanced
Al-based methods can have the potential to greatly enhance dam siting decision-making as they increase
methodological prediction capability and efficiency, improve interpretability of model outputs, and
ready itself for a seamless integration within GIS data and multi-criteria evaluation frameworks.

4. Conclusions

This study demonstrates that the inclusion of Al-based GNN weightings within dam site selection can
significantly improve the accuracy and reliability of MCDM analyses. Due to the automatic learning
process of weights for multiple environmental and topographic factor, the subjective weight assignment
is excluded in the GNN model, and multi-factor coupling complexity can be fully considered. The
enhanced validation performance, including an elevated AUC of 0.826 suggests a more stable predictive
model that is closer to real world applicability as compared with the previous manual-weighting model
(AUC 0.806). The high-suitability zones and top-ranked dam sites in the study area, which were
identified, not only complied with the known preferential locations (e.g. upper basin's narrow valleys),
but also gained much confidence due to data-driven weighting. This Al incorporation has therefore
increased the level of trust of the improved decision-making tool for planners and engineers, who can
now be more confident that proposed dam sites have been vetted through sound, dispassionate analysis.

Significantly, the successful implementation of GNN-based MIF weighting in this case study
demonstrates the wider applicability of Al and GIS-MCDM integration in water resource planning. The
proposed approach is cost-effective, repeatable and can be applied over different sites at different scales
to serve as a useful decision-support system for both dam location selection and beyond. This method
can be used by planners in many situations such as reservoir site selection, planning of flood control
structures, and other infrastructure location problems with conflicting objectives.
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